
Bootstrapping an Ubiquitous Monitoring Ecosystem for
Accelerating Vocabulary Acquisition

Mircea F. Lungu
SEARCH @ Johan Bernoulli Institute

University of Groningen
Netherlands

ABSTRACT
Learning the vocabulary of a new language is a very slow
and time consuming process which can take many years of
dedicated study. Free reading is known to be important for
improving vocabulary and so are optimally timed repetitions
of learned concepts. However, these two have not been put
together until now.

This paper presents the architecture of a monitoring ecosys-
tem of applications which tracks the reading activities of
a learner and builds a model of their evolving knowledge.
Based on this model it can steer their future reading and
studying sessions in such a way as to accelerate the speed
with which they acquire new vocabulary.

The paper describes several requirements for such an ecosys-
tem, together with a prototpye implementation, and com-
ponent applications. Finally a series of open questions that
highlight opportunities for future research are discussed.

Keywords
software ecosystems; HCI; applied linguistics;

1. VOCABULARY ACQUISITION
At any given moment millions of people are learning the

vocabulary of a new language. The first steps in the acquisi-
tion of the new language are usually full of enthusiasm, but
often the learner gives up once he realizes the magnitude of
the task.

Indeed, once a learner has acquired the basic vocabulary
of a foreign language, they are still many thousands of words
away from actually mastering the new language. To improve
their vocabulary they must constantly expose themselves to
contexts in which the learned language is used at a level that
is not too difficult but not too easy either – that is, they must
study in the zone of proximal development. Studying lan-
guage textbooks is the traditional approach but, very often,
textbooks being written for everybody are not particularly
interesting for anybody.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ECSAW ’16, November 28-December 02, 2016, Copenhagen, Denmark
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4781-5/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2993412.3003389

Amazon has made a first step towards allowing the learner
to read engaging texts by integrating translations and ba-
sic vocabulary exercises with their proprietary eBook reader
device – the Kindle. Besides the limitations of being locked
to a given dvice, this solution suffers also from the fact that
the words being learned are locked in by Amazon. We will
see later that this limits the possibilities of accelerating the
speed with which vocabulary acquisition happens. Another
solution that the readers have is using Google Translate on
the web. However, just as with Amazon, the translations
that the user makes online are still not available outside the
Google ecosystem. Thus the possibility of other applications
benefiting from the knowledge of what the user is learning
is also absent.

On the side of vocabulary rehearsal applications a plethora
of solutions exist, but most of them are data silos – they do
not interact with data from reader applications.

2. AN OPEN MONITORING ECOSYSTEM
To address the disadvantages of the locked down nature

of the existing infrastructures, we propose as a solution an
ecosystem consisting of a federation of applications that sup-
port a learner in accelerating vocabulary acquisition. Such
an ecosystem should be built on the following principles:

Free Reading. The learners are able to read the materials
they find interesting with the applications they prefer
to use. When a learner encounters a word he does not
understand, a high-quality, contextual translation will
be offered.

Ubiquitous Monitoring. All the encounters of a learner
with foreign materials are monitored in order to build
an evolving model of the current state of the knowledge
of the learner. The applications that are part of the
ecosystem report a users interactions with the texts to
a central repository.

Accelerated Learning. Based on the learner model in-
telligent agents recommend further reading materials
that are both likely to be interesting to the reader and
at the same time likely to maximize the retention of
the most important studied words. The original con-
text of the words can be used to accelerate retention.

Openness. The ecosystem is open to any reader or trainer
application, be it open source or not, as long as it
contributes back to the ecosystem. The data about a
given leaner belongs to the learner themselves: they
decide which applications have access their data.

http://dx.doi.org/10.1145/2993412.3003389

This paper presents an ecosystem which has as a goal
supporting a learner in vocabulary acquisition. However, an
ubiquitous monitoring ecosystem can have other goals
as long as it represents a federation of applications that mon-
itor a certain aspect of a user’s interaction with information
to build an evolving model of the user knowledge.

It might appear intuitive for the reader that when the goal
is accelerating the velocity of knowledge acquisition, such an
ecosystem will present a network effect: the more contexts
in which the reader is supported by applications from the
ecosystem, the better the learner knowledge model that can
be built, and the better the provided user experience.

3. A PROPOSED ARCHITECTURE
In this section we propose a high-level architecture of a

ubiquitous monitoring ecosystem dedicated to accelerating
vocabulary acquisition. Figure 1 shows some of the main
actors and components in our ecosystem.

Language Learners

Reader
Applications

…

Trainer
Applications

Historian

Estimator

Oracle

data flow
usage

Librarian Motivator

Web
Profile

Prioritizer

Learning Accelerator Platform

Domain
Knowledge

User
Model

Service Interface

Figure 1: A very high-level view of the architecture
of an exemplar ubiquitous monitoring ecosystem

Only one category of actors is explicitly depicted – the
language learners. The platform developers and the applica-
tion developers are missing from the picture. The latter are
the makers of two types of applications:

Reader Applications facilitate the lecturing of materi-
als in foreign languages. These applications have ide-
ally two properties in common: 1) the usability of ob-
taining translations for unknown words is high (this is

a quality attribute); 2) they report back to the plat-
form information relevant for infering the current user
knowledge1 (this is a functional requirement).

Trainer Applications provide exercises to accelerate the
retention of individual words. Trainer applications
have in common two functional properties: 1) they
should request from the platform a list of words to be
studied and 2) they must provide back to the platform
information about how well the learner behaved with
respect to a given word2.

Note that the Reader and the Trainer applications need
not necessarily be disjoint applications; instead one applica-
tion could provide both functionalities.

The learning accelerator platform sits at the core of the
ecosystem since it stores and orchestrates the exchange of
information between the various actors. It consists of six
main components roughly divided into two categories: those
related to domain knowledge and those related to user mod-
eling. The components are:

1. The Historian is a data warehouse that sits at the
core of a monitoring ecosystem. It records all the inter-
actions of a user with knowledge based on the reports
of Reader and Trainer applications. It stores the data
in either a relational or a noSql database, depending
on the type of data.

2. The Oracle is a service that has all knowledge about
the units of knowledge in the domain. In our case it
has knowledge of translations between many pairs of
languages. It notifies the historian of every request
it receives. It uses adaptive strategies to choose be-
tween different backends that have different properties
in terms of cost and quality.

3. The Prioritizer is a data mining focused component
which aims at ranking the information in the domain
based on a global view of its relative importance. It
can be built based on statistical analysis of the learning
patterns of the various leaners or based on a generic
study of corpora in the target language.

4. The Estimator is a machine learning agent that es-
timates the current knowledge of the learner based on
user-specific information received from the Historian
and language-specific information received from the
Prioritizer. It decides what are the most likely items
that must be studied by the learner.

5. The Librarian provides reading recommendations wich
are interesting to the learners while at the same being
at the appropriate difficulty level. It is a web crawler
that uses natural language processing techniques but
personalizes its results based on information from the
Estimator.

6. The Motivator is an agent that uses gamification
techniques to provide feedback that would keep the learner
motivated. It uses information 1) from the Historian to
report on a learners engagement and 2) from the Es-
timator to provide feedback on the actual vocabulary
acquisition progress.

1e.g., the looked-up words, their context, reading speed, etc.
2e.g., the correctness of an answer, the time to answer, etc.

4. BOOTSTRAPPING THE ECOSYSTEM
In order to obtain a minimal viable ecosystem several of its

key components must be in place. This section presents in a
quasi chronological order several milestones in the evolution
of the ecosystem over the recent years. Where appropriate
we take the chance to step back and highlight general open
questions that might be faced by future builders of monitor-
ing ecosystems.

4.1 A Minimal Viable Ecosystem
The first milestone was releasing four main components

of the ecosystem:

1. A reader application implemented as a Chrome exten-
sion.3 It allows a learner to read any text and obtain
in-place translations on any website as long as it is
visited within the Chrome browser.

2. An initial version of the learning accelerator platform,
containing the Historian, a Translator that relies on
external services, and a very basic version of the Esti-
mator, exposed via a REST API. [1].

3. A basic Web Profile application4 that provides account
management, and a simple interface to present the
reading history of a learner.

4. A very simple trainer application which asks the learner
to recognize a given word within its context. The
words and contexts are selected from the past read-
ings of the learner.

The web application and the REST API were deployed to-
gether on the same server as Python-based applications and
the separation between them was not well enforced. This
came to hunt us later when we discovered that as we were
extending the REST API for other applications, we were
duplicating functionality already existent in the web profile
application. Surely a little technical debt can speed up the
initial bootstrapping phase, but we think that it would have
been better to treat internal applications as future third-
party applications already from the begining.

The Chrome extension as a reader application posed two
main limitations: 1) not everybody is reading his foreign
language texts on their computer and, 2) some users are
circumspect when it comes to installing third-party browser
extensions. In truth, this circumspection is well founded
since a browser extension has access to all the information
on the pages the user visits.

In our case, we made our extension be active only on those
pages where the user explicitly activates it. However, the
only way a user can be completely confident that no infor-
mation is leaking is reading the code. And although the
code is open-source, this is not a realistic request from a
language learner. A first question about privacy in a moni-
toring ecosystem emerges:

Can a monitoring ecosystem ensure and prove to
its users that individual applications do not have
access to more data than they are allowed to?

3Available at: https://zeeguu.unibe.ch/chrome
4The web application is available at https://zeeguu.unibe.ch

4.2 Adding a Reader for Android
The Zeeguu Reader for Android was implemented as a

bachelor project by Schwab [2]. The application is written in
Java and functions as an RSS feed reader. The architecture
of the application makes a clear distinction between:

1. The Zeeguu Android Library5 which eases the commu-
nication with the REST API and is released as a sep-
arate open-source component, and

2. The actual reader application which focuses on the us-
ability of offering textual translations in context

The separation has proven to be a good choice since a
second Android application – a Dictionary implemented by
Giehl [3] could readily benefit from the API component.

During usability studies, however, we learned that a sub-
set of the test users found it inconvenient to have both
the Reader and the Dictionary applications installed. They
would have preferred a single application. This raises an-
other open question:

When is it better to fuse multiple applications into
a single one and how to balance the convenience of
a single application with the scalability of dedicated
applications?

One of the features of the Android Reader application was
ranking news items based on their difficulty with respect to
the current estimated knowledge of the learner. Since such
an algorithm would very likely be required for other applica-
tions in the ecosystem, we decided to move this functionality
in a separate component on the server (the Librarian) and
expose it using an API.

The Android Reader relies on Feedly, a third party API,
to track news feeds. This turned out to be very cumbersome
for learners since they required to create a new account to a
different service, before using the application. This problem
was solved in the case of the iOS reader.

4.3 Adding a Reader for iOS
Oosterhof [4] implemented a reader for iOS. The applica-

tion written natively in Swift eliminates the explicit depen-
dence on third party services like Feedly. Instead the burden
of extracting feed information from pages and monitoring a
users preferred feeds has been moved into a separate agent
inside of the platform. We discussed earlier how the Librar-
ian was also migrated to the platform from an app. This
illustrates our assumption that having all the information
about a learner stored in a single central place simplifies
data processing and user modeling. However, a more dis-
tributed design cold also be investigated. Which brings us
to the question:

Is it practical to have the learner modeling infor-
mation distributed across applications or is the cen-
tralization of the learner model the dominant strat-
egy in a monitoring ecosystem?

The architecture of the iOS application made again a clear
separation between a component which was to interact with
the API6 and the actual GUI of the application. Since for

5https://github.com/linusschwab/zeeguu-android-library
6https://github.com/mircealungu/zeeguu-ios-library

https://zeeguu.unibe.ch/chrome
https://zeeguu.unibe.ch
https://github.com/linusschwab/zeeguu-android-library
https://github.com/mircealungu/zeeguu-ios-library

every new language the developer must handwrite a new API
interface to communicate with the core services, we realized
that we missed the opportunity of automatically generating
the APIs for different languages. However, as far as we are
aware, no such generator exists for the Python technology
stack used.

4.4 Adding a Smartwatch Trainer
According to current estimates, the wearable market7 will

pass 111 million shipped devices in 2016, up from 80 million
shipped in 2015.

The ease with which a user can consult his smartwatch
makes it an interesting platform for a learning strategy called
micro-learning known for quickly closing skill and knowledge
gaps [5]. Having a trainer on the smartwatch would make it
easy for the learner to take advantage of and study during
dead moments of the day (e.g. waiting for the barista to
prepare a cappuccino).

A trainer, dubbed Time to Learn, was implemented for the
Gear S2 smartwatch by Haan and Nienhuis[6]. The Gear
S2 device runs on the Tizen mobile operating system and
applications for it are written using HTML5 and Javascript.

To support micro-learning, the information on the smart-
watch should be readily available when a learner looks at
the watch. Thus, Time to Learn is implemented as a watch
face which is divided in two: the top half presents the usual
watch information, while the bottom part represents a word
recognition challenge for the learner. The word to be dis-
played is selected based on an Estimator recommendation.

After every challenge, the learner provides feedback on
whether he knew a given word or not. This feedback is sent
back to the Historian so it can be used in the future by the
Estimator.

On the platform, the Estimator has to take into account
the existence of the smartwatch events explicitly and treat
them in a different way than the events from the web based
trainer. Theoretically, the Estimator could be implemented
with machine learning technologies, in such a way as to be
agnostic about the existence of the indiviudal trainers. How-
ever, this direction needs to be explored further. This leads
us to raising a question about the openess principle (from
Section 2):

Is it possible to let new applications join a mon-
itoring ecosystem without having a central compo-
nent that is aware of the existence of the individual
applications?

5. REFLECTIONS
Based on early user studies and the feedback we received

regarding the individual applications we can say that such
an ecosystem shows promise. But work still has to be done
to unequivocally show the benefits it brings to the learners.

Until now, all the applications that were added, have been
in one way or another supported by the creator of the ecosys-
tem. Although all the actors could benefit from joining such
an ecosystem, the challenge of incentivizing external appli-
cation developers actually join remains a future challenge.
We will work on defining policies that will benefit all the
players [7].

7Which includes fitness trackers and smartwatches, so the
number of smartwatches is likely smaller

Also, this is not the first ecosystem that aims to track
the interactions of a user with data and build a better user
model based on this; many commercial companies do it too.
However, the goals of these companies are usually driven by
economic reasons, while the goal of our ecosystem is mainly
supporting future research and education. Indeed, one type
of stakeholder that we did not have space to talk about
in this paper are researchers who could have access to real
world, longitudinal data.

It would seem thus, that since economical reasons do not
drive the evolution of the ecosystem, we should be con-
fronting with different problems than industrial enterprises.
However, the economical sustainability of such a platform
when hosted in academia is not necessarily straightforward.
The hosting costs of the core components are at the moment
not significant but they could become large in the eventu-
alily of a massive growth.

6. CONCLUSION
The paper presents a proposed architecture and reports

several lessons learned while bootstrapping an ecosystem de-
signed for accelerating vocabulary acquisition through free
reading and optimally timed repetitions. The paper also lists
several open research questions which are probably relevant
for other types of monitoring ecosystems.

Acknowledgements The author would like to thank Anca
Lungu, Sara Mahdavi-Hezavehi, Jens Knodel, Paris Avge-
riou and the anonymous reviewers for feedback on earlier
versions of this paper.

7. REFERENCES
[1] M. Lungu, K. Sethi, S. Marti, and L. Schwab, “The

Zeeguu API - Modeling Learner Progress to Accelerate
Vocabulary Acquisition,” Jul. 2016. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.58569

[2] L. Schwab, “Using RSS feeds to support second
language acquisition,” University of Bern, Bachelor’s
thesis, Jun. 2016. [Online]. Available:
http://scg.unibe.ch/archive/projects/Schw16a.pdf

[3] P. Giehl, “Zeeguu translate application — extending the
Zeeguu platform to the Android device,” University of
Bern, Bachelor’s thesis, Aug. 2015. [Online]. Available:
http://scg.unibe.ch/archive/projects/Gieh15a.pdf

[4] J. Oosterhof, “Making reading in a second language
more enjoyable,” Aug. 2016, bachelor’s Thesis,
University of Groningen.

[5] D. Dearman and K. Truong, “Evaluating the implicit
acquisition of second language vocabulary using a live
wallpaper,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM,
2012, pp. 1391–1400.

[6] R. Nienhuis and N. Haan, “Time to learn – A new way
of learning with the use of a smartwatch,” Aug. 2016,
bachelor’s Thesis, University of Groningen.

[7] S. Jansen, A. Finkelstein, and S. Brinkkemper, “A sense
of community: A research agenda for software
ecosystems,” in Presented at the 31st International
Conference on Software Engineering - Companion
Volume, 2009. ICSE-Companion 2009, IEEE, 2009, pp.
187–190.

http://dx.doi.org/10.5281/zenodo.58569
http://scg.unibe.ch/archive/projects/Schw16a.pdf
http://scg.unibe.ch/archive/projects/Gieh15a.pdf

	Vocabulary Acquisition
	An Open Monitoring Ecosystem
	A Proposed Architecture
	Bootstrapping the Ecosystem
	A Minimal Viable Ecosystem
	Adding a Reader for Android
	Adding a Reader for iOS
	Adding a Smartwatch Trainer

	Reflections
	Conclusion
	References

