
Git-Truck: Hierarchy-Oriented Visualization of
Git Repository Evolution

K. Højelse∗, T. Kilbak∗, J. Røssum∗, E. Jäpelt∗, L. Merino†, M. Lungu∗

∗IT University of Copenhagen
†DILAB, Escuela de Diseño, Escuela de Ingeniería, Pontificia Universidad Católica de Chile

Abstract—The assessment of repository evolution is partic-
ularly complex when one needs to analyze both 1) how the
codebase is organized hierarchically and 2) how this codebase
evolves over time. To address this problem, we developed Git
Truck, a visualization tool that includes multiple views for
the analysis of the evolution of hierarchically organized Git
repositories. We conducted a preliminary user evaluation with
18 participants who, using a remote and asynchronous method,
installed Git Truck, used it, and filled in a questionnaire to report
their experience and impressions. We learned that participants
consider particularly useful views that help them with under-
standing the contribution level of team members and views that
highlight the parts of the system that change the most. The
participants see Git Truck as a highly specialized tool; not for
daily use but rather for a lower frequency of use.

I. INTRODUCTION

Most industrial software projects are large, complex, and
impossible to create or maintain without a team of highly
skilled developers [6]. One fundamental technology that such
teams of developers employ to collaborate are version control
systems – with Git being the most popular such system at the
moment [5, 25]. Often, software projects’ stakeholders would
benefit from using insight from repository evolution in their
decision making processes, however, exploring the structure
and evolution of a software repository is still a challenge [3].

One of the most powerful conceptual tools for managing
complexity is the hierarchical organization of the source code
of such systems [14, 20, 27]. This is why many hierarchy-
oriented visualization tools have been proposed over the years.
However, many of these are language dependent and do not
show evolution [4, 24, 26], many take evolution into account
but their focus is not the hierarchical organization of the source
code of the system [10, 12], and finally some are presented
without an evaluation with users [11] as a recent survey also
observes [19].

In this context we think that it is valuable to further
investigate with users in which way a language-independent,
hierarchy-oriented evolution visualization tool can support
stakeholders in their software engineering practice. Conse-
quently, we formulate the following research question: How
can hierarchical-oriented visualization be used to support the
stakeholders of a project in assessing the evolution of the
system?

To address this question, we develop Git Truck, a tool that
can visualize Git repositories for the analysis of evolution. Git
Truck uses hierarchical visualizations (i.e., Treemaps, Circle

packing) to represent files in a repository. The system shows
files nested in folders to provide a spatial locality of a given
codebase. In the visualizations, the marks that represent files
are augmented with code metrics using size and color. The
design of the system and visual perspectives are intentionally
generic, such that, the results are potentially transferable to
other tools. The usability of the tool is on the other hand,
fairly good, such that, the tool itself does not stand in the way
of potential users trying it out and reporting on it.

To evaluate Git Truck, we first invited personal contacts and
conducted a pilot study. We adopted a remote asynchronous
method in which participants were asked to (i) install Git
Truck in their working environment, (ii) use it to visualize
a Git repository, and (iii) report their experience by filling
in a questionnaire. We used the results of the pilot study to
improve the questionnaire by adding, removing and clarifying
questions. Next, we announced an open invitation using social
media (i.e., LinkedIn, Twitter), in which we engaged 18
participants. The anonymized results from the questionnaires
are available as supplemental material [15].

We found that 86% of participants had no problems in-
stalling Git Truck, and 77% found the "Top Contributor" view
useful. Overall, participants particularly were interested in
identifying files developed by single authors as well as in the
analysis of the contributions of team members. They think Git
Truck could be specially useful for novice developers involved
in large projects.

The main contribution of this paper is twofold: (i) presenting
the publicly available Git Truck visualization tool and its
architecture, and (ii) the results of a remote asynchronous user
evaluation that sheds light on the usefulness of Git Truck and
similar tools

II. GIT-TRUCK

We present Git Truck - a tool to obtain a visual overview
of a Git repository, by displaying a visualization in a web
browser. The tool is run locally on the user’s system, enabling
the visualization of private repositories and repository host
independence1. The link to the repository containing the
solution can be found on Git Truck’s GitHub page2. The tool
can also be easily installed from the NPM registry3 by running
npm install git-truck.

1Can work with any Git provider, e.g. GitHub, Azure DevOps
2https://github.com/git-truck/git-truck
3https://www.npmjs.com/package/git-truck

https://github.com/git-truck/git-truck
https://www.npmjs.com/package/git-truck


A. Layouts for visualizing hierarchical file organization

To visualize the structural information of a repository, i.e.
files and folders, we decided on two different algorithms:
circle packing4 and treemapping5. These algorithms are used
to generate the diagrams bubble chart (Figure 1) and tree map
(Figure 2), respectively. Both diagrams are nested hierarchical
layouts, where folders are represented by outlined shapes,
while files are represented as filled shapes. For both diagrams,
the area of a file representation, is a function of the files size
in bytes.

In general, the tree map leads to less empty space than circle
packing. See Figure 1 and Figure 2 for a comparison of the
utilized space between the two chart layouts (note that both
show the same system: Git Truck itself). We chose to use both,
to make the tool suited for a greater set of repositories sizes.

Folder names are shown on folders that are big enough to
fit the name, while file names can be seen when hovering over
its representation, with the cursor. This is done to reduce the
clutter that displaying all the file names cause, in addition to
removing performance issues related to rendering a lot of text.

Both layouts are further optimized, by (i) not rendering
elements that would become too small to see, (ii) not rendering
empty folders, and (iii) collapsing any folder that only contains
a single folder, into a single element.

Figure 1. The Git Truck repository visualized with circle packing.

Figure 2. The Git Truck repository visualized with treemapping.

4https://en.wikipedia.org/wiki/Circle_packing
5https://en.wikipedia.org/wiki/Treemapping

B. Predefined Views on a Repository

Git Truck comes with a set of five predefined methods
of highlighting various properties of a repository. They are
enumerated and described in this section.

1. File Extension

This perspective gives an overview of where different types
of files are located in a repository. A file is colored according
to its extension, in accordance with the colors used on the
GitHub website. This view is intended to strengthen the
structural overview of a repository, by showing how files of
different programming languages are organised. This is useful,
since most of the systems nowadays are multi-lingual [22]. It
also serves to help the user decide whether some folders or
files should be removed from the analysis.

Figure 3, shows the File Extension view6 applied on Py-
Torch – arguably, the most popular machine learning library
at the time of writing this paper. The figure shows that different
subsystems are written in either dominantly C++ (e.g. the
torch module in the top-left part of the image) or Python
(e.g. the test module in the top-right part of the image).

Figure 3. The File Extension View for PyTorch shows an implementation
that is split between C++ (pink) and Python (blue)

6All the example views presented in this section are based on the full history
of the subject systems as of June 2022. For PyTorch we used the code at:
https://github.com/pytorch/pytorch

https://en.wikipedia.org/wiki/Circle_packing
https://en.wikipedia.org/wiki/Treemapping
https://github.com/pytorch/pytorch


2. Number of Commits

This view highlights those files in the history of the reposi-
tory, that have been affected by the largest amount of commits
and is intended to help a user find "hotspots" in the code base,
i.e. which files are changed frequently.

Figure 4 shows the Number of Commits View on the Flask
web application framework. Flask7 is one of the two most pop-
ular web application frameworks for Python 8. What the figure
confirms is that Flask deserves its self-designation as a mi-
croframework – the source code is quite small, examples, tests,
and docs take most of the view. Also, the two most changed
files are src/flask/App.py and CHANGELOG.md.

The number of commits for a file, is the count of commits
reachable from the selected branch head, that also makes a
change to that particular file. The range of commit counts are
normalized, whereafter the color is picked from a linear color
gradient. A low commit count corresponds to a high lightness
value and vice versa.

Figure 4. The most changed files in Flask web application framework are
flask/CHANGELOG.md and src/flask/App.py

3. Last Changed

This view shows the time that has elapsed since the latest
modification, of the various files in a project, occurred. The

7https://github.com/pallets/flask
8It was the top most popular framework for Python and the 7th across all

languages in the StackOverflow developer survey from 2021 (https://insights.
stackoverflow.com/survey/2021#most-popular-technologies-webframe)

color is picked from a scale where a darker color indicates a
higher value, i.e. that a file has not changed for a longer time,
and a light color denotes a file that has been modified recently.
The color scale is exponential with six fixed levels denoting
the following periods: a day, a week, a month, a year, two
years, more than 4 years.

Figure 5 presents the same Flask system as the previous
view. It shows that the files in the /src and the /tests
folders changed more recently than those in the /docs folder.

Figure 5. Screenshot of the Last Changed View for Flask shows a system in
which code (/src) and tests are recently changed (as of 2022)

There are very few files that have not changed in the last
four years. Compare this with the well-known open source
project, ArgoUML represented in Figure 6.

Figure 6. Last changed in ArgoUML shows a system in which most of the
files did not change in the last four years

https://github.com/pallets/flask
https://insights.stackoverflow.com/survey/2021##most-popular-technologies-webframe
https://insights.stackoverflow.com/survey/2021##most-popular-technologies-webframe


4. Single Authors

This view is intended to highlight files which have a truck
factor of one9, indicating that only one person has a deep
understanding of the file.

This view highlights in red files that throughout the reposi-
tory’s history are authored by only one person. Files that have
more than one author are colored in a neutral color.

Figure 7 shows single authors in sqlalchemy10 - an ORM for
Python that is often used with Flask for backend development.
The figure shows that very few files have only one single
author in this system. This although the "Author distribution"
sidebar shows that one author in the system is responsible with
89% of the code changes as measured in LOC11.

Figure 7. Screenshot of showing the Single Authors View for SQLAlchemy
– the most popular ORM library for Python

9https://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/
10https://github.com/sqlalchemy/sqlalchemy
11Lines of Code

5. Top Contributors
This view is intended to help a user get an overview of

who is most familiar with parts of the codebase. It shows
which author has made the most line-changes to a particular
file12 throughout the history of the repository. Author colors
are generated using a method that aims to assign a visually
distinct color to each author.

Figure 8 presents the top contributors for sqlalchemy – the
system presented also in the previous section. The figure shows
that virtually all the files are dominated by one developer.

Figure 8. The Top Contributor view for SQLAlchemy highlights a critical
open-source system where a single author practically dominates all the files.

Compare the figure above with the one from another popular
ORM – EFCore13 for the .NET platform. This one is also
dominated by one contributor, but not to the same degree as
the previous system.

Figure 9. The Top Contributor View for EFCore – an ORM framework for
the .NET platform

12The most line changes are calculated in a first-past-the-post manner (https:
//en.wikipedia.org/wiki/First-past-the-post_voting)

13https://github.com/dotnet/efcore

https://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/
https://github.com/sqlalchemy/sqlalchemy
https://en.wikipedia.org/wiki/First-past-the-post_voting
https://en.wikipedia.org/wiki/First-past-the-post_voting
https://github.com/dotnet/efcore


 BRANCH SWITCHING 6. DETAILS ON DEMAND5. HIDING FILES AND FOLDERS

3. ZOOMING 4. USER MERGING2. REPOSITORY EXPLORER

Figure 10. Overview of the Git Truck UI. The orange arrows point from a clickable target to the component or page that will be shown once clicked.

C. Interaction and Navigation

The following list of interactive features have been imple-
mented in Git Truck to support exploring repositories.

1) Branch switching: Selecting a different Git branch or a
different tag will analyze it and then transition to presenting
the new information. This allows the user to see how the
project has changed between multiple points in time.

2) Repository explorer: When opened in a folder that is
the parent of a series of repository folders, Git Truck provides
an overview of all the repositories in a given folder. However,
this is a feature that we did not evaluate.

3) Zooming: Zooming in and out on specific folders is
possible by clicking on or within a folder, allowing inspection
of a sub-folder of particular interest.

4) User merging: It is possible to inform Git Truck which
git usernames represent the same person. These will then be
considered as a single user.

5) Hiding files and folders: Specific files, folders, or files
of a certain type can be hidden from the visualization, in case
they are irrelevant for the analysis (e.g. a committed package-
lock.json file is larger than an entire project, a data folder that
has 1K files, etc.).

6) Details on demand: Selecting the visual representation
of a file or folder will display detailed information about it.

This includes which authors has done the most work on it,
when it was last changed, and more.

D. Usage

Git Truck is published as an npm package14 to the npm
registry. This approach gives a low barrier to entry, as it only
requires the user to have Node.js installed, which is fairly
common among developers.

There are several ways of installing and running Git
Truck with the help of the npm package manager, the sim-
plest being running the following on a system that has npx
installed15:

npx git-truck@latest

This command downloads and installs the latest version of
the package from the npm registry, then opens Git Truck in
the default browser, and starts analyzing the given project.
Once the analysis is done, the user is ready to investigate
their system with the help of the UI presented in the previous
sections.

14https://www.npmjs.com/package/git-truck
15npx is a tool bundled with Node.js, that can automatically download,

install, and execute packages from the npm registry16

https://www.npmjs.com/package/git-truck


Given that with one command we allow the user to install
and run Git Truck we believe that we have lowered the barrier
of adoption to the minimum.

III. ARCHITECTURE

One of the requirements that drives the architecture of the
tool is the need to execute it locally, and thus, provide privacy
for the user and assure them that their code is never uploaded
anywhere. Indeed, privacy has been a reason for developers to
be reluctant to upload their source code online[2].

A block diagram of the architecture of the system can be
seen on figure 11. The various components in the diagram are
discussed in the following subsections:

Figure 11. Git Truck Architecture.

A. Front-End and Back-End

When the user executes the git-truck npm package, a
Node.js process is started, which serves up the user interface
in the default browser on the host machine.

Since JS code running in the browser is not allowed to
access the file-system, the repository analysis component is
separated in it’s own process with which the UI communicates.
The UI communicates back to the analysis component of the
tool via the full-stack framework Remix. Remix allows for
easy state handling, such that when a user performs an action
in the UI, for example clicking a button to hide a file, we can
grey out the button, send a request to the analyser, and once
the analyser sends a response, we can update the state in the
UI, and reactivate the button.

B. The Analyzer

The analyzer is responsible for collecting structural and
historical Git data from a repository and turning it into an
intermediate data structure, that can be used by the visualiza-
tion.

The analysis is done in two steps:

1) The file structure is gathered, via git ls-tree17

2) The commit history is processed. git log18 is used to
get the commit history.

To extract data from Git, the analyzer runs Git as a sub-
process from Node.js. The decision of using git as a sub-
process came after trying out git-specific libraries which had
their limitations, e.g. having to be build locally on the users
machine.

In our testing the sub-process spawning is very fast on
Linux, but not on Windows or MacOS. However the per-
formance hit is minimal, because the slowdown comes from
starting and closing a process. On our Windows PC, spawning
an empty process takes 6-13 ms, and we only spawn a small
number of processes.

The resulting data is cached in a local file, and the full
analysis will then only be done again, if changes are detected.

C. Chart layout generation

Git Truck uses algorithms from D3.js19 to generate the lay-
out of the bubble chart and the tree map. They use the included
circle packing and treemapping algorithms, respectively.

To increase scalability, we modified the layout generated
by D3.js, by showing folder names only when there is room
for it, and not rendering elements that are too small to be
seen. Rendering of the SVG graphics was implemented with
React20.

Transitional animations were implemented using the react-
spring library21, meaning that whenever the view changes, for
example if the user zooms in on a folder, there will be an
animation transitioning to the zoomed in folder.

IV. USER EVALUATION

We tested the usability of Git Truck to analyze our design
choices and identify potential ways of improvements. In the
following, we present the method and discuss the collected
results.

A. Method

We adopted an asynchronous remote usability testing [7]
approach. That is, participants were able to test Git Truck at
different times and in their particular computer setups. We
chose this method to allow participants to behave like they do
in their daily work.

We conducted an initial pilot test by inviting personal
contacts. Participants were invited to download, install, and use
the features of our visualization tool to analyze a repository
of their own. Additionally, we asked participants to fill in a
questionnaire to collect their impressions. The results helped
us to improve the questionnaire by clarifying questions that
were, for instance, misunderstood or not interesting in terms
of the research question.We improved the questionnaire. We

17https://git-scm.com/docs/git-ls-tree
18https://git-scm.com/docs/git-log
19https://d3js.org/
20https://reactjs.org/
21https://react-spring.io/

https://git-scm.com/docs/git-ls-tree
https://git-scm.com/docs/git-log
https://d3js.org/
https://reactjs.org/
https://react-spring.io/


Table I
QUESTIONS THAT PARTICIPANTS HAD TO ANSWER WHEN TESTING THE USABILITY OF GIT-TRUCK.

Aspect Question Rationale
Setup Did the tool open properly in your browser To understand how smooth was

the setup
User Was anything about exploring the UI in the browser confusing? To identify confusing elements in

the interface and configurationWas anything about setting up Git Truck confusing?

Features Which of the following features are you aware exist? To examine how effective are the
included featuresWhich of the following features did you find useful?

If you found any of the features particularly useful, please explain how you used it

Discoveries Did you learn or discover something interesting about the repository? If yes, please describe it To analyze how our tool promotes
discoverabilityDid you discover anything about the repository, that made you want to change or rethink the code/folder?

Did you gain any new insight into how people contribute to the repository?

Context For how many years have you worked professionally with programming? To study the characteristics of the
projects and development teams as
well as the role of the participant

What is your relation to the project?
What kind of project is the repository releated to?
How big is the team responsible for the repository
How many commits are there in the project?
How many files are there in the project?

Views Which chart gave you the best overview? If possible, please explain why? To understand how effective are
the views and what features are
particularly useful

Which views did you find useful/interesting? If possible, please explain why it was useful to you?
Which views did you not find useful? If possible, please explain your answer?

Suggestions Is there anything that you would like to see added/changed about the tool? To collect general impressions and
suggestions from participantsHow frequently do you think you would use Git Truck? Please explain

If you have any further comments about Git Truck, please write them

aim to formulate questions that help us understand how users
interact with Git Truck and how the tool helped them to
learn about their software artifacts. Table I presents the list
of questions that participants where asked when testing the
usability of Git Truck.

Next, we invited a larger set of participants by sending
direct invitations to computer science students and professional
software engineers as well as advertising the evaluation to our
contacts in social media (i.e., LinkedIn, Twitter).

B. Results

We collected results from 18 participants who answered the
survey. The data gathered from the survey is available as sup-
plemental material published on Zenodo[15]. In the following
we organize the results of the evaluation by answering a series
of questions.

Is the tool easy to install?
Yes. The setup process described in Git Truck’s README22

worked as intended for 86% of respondents [A]. Amongst the
remaining ones, one reported a bug that we fixed; and another
one used an uncommon distribution of Linux. In the end,
all users that faced problems were able to install Git Truck
by using npm install instead of npx [15, S]. The users
largely thought that the UI was intuitive and easy to navigate,
only with minor suggestions on how to clarify some elements
[15, Q]. The setup could have been more minimal, if Node.js
was not a requirement. That said, even for users not familiar

22https://github.com/git-truck/git-truck#readme

with Node.js, the setup process went mostly without problems.
[15, R].

Which views are perceived as most useful?
Although all views were considered fairly useful, "Top

contributor" was the most liked (17/18) view by the users
in the survey. Immediately after that is "Number of Commits"
(13/18). People also found "File Extension" useful (12/18).
"Last Changed" was considered the least useful (6/18) .

When it comes to layout, the bubble chart is the preferred
diagram among the respondents, with 81% of users answering
that the bubble chart provided a better overview [15, I].
The reasons for this are varied, and include “more intuitive
to navigate when including subfolders”, and “more organic,
easier on the eye” ([15, U]).

The users that prefer the tree map, all have more than five
years of professional programming experience, and they all
noted that they prefer the efficient use of space of the tree
map (e.g. “With many files, the bubble chart struggles to show
the colors, while the tree map even when looking at the entire
project shows more colors” ([15, U])).

What do users learn? Code files written by only one author
and the level of contribution by group members. Indeed, many
users were surprised by the distribution of authorship across
files. One of them wrote:

“There were a few source code files that were
ENTIRELY written by one author. I had known about
some parts like "oh yeah, that was TOTALLY so-and-

https://github.com/git-truck/git-truck#readme


so’s project", but I hadn’t expected a few other files.”
[15, M]

Some students working on group projects were able to see if
their group members did not contribute as much they should. A
teacher reflected that Git Truck could be useful to encourage
students to participate more in projects. He wrote: "[...] to
follow progress of a project. Maybe also to encourage students
to participate more in a project" [15, P].

Is there a kind of user or project for which the
tool is more useful? Novice developers who work on large
collaborative projects. The survey shows that only 37% of
respondents (3/8) corresponding to developers who analyzed
industrial repositories reported learning something new about
their system with Git Truck. On the other hand, 80% (4/5) of
the students who analyzed academic projects reported learning
about the contribution of group members [15, W]

Individual responses show that students have the most
opportunities to gain insight into a project’s structure (e.g.
“found a mistake in the way one of our folders had been set
up”) and realize opportunities for improvement (e.g. “Non-
code files (pictures, models etc.) took up more of the repo
than expected. It made me consider using something like LFS
or hosting the files on a cdn”). [15, N]

How often and in what context do the participants
think that the tool could be useful? Git Truck could be
used at least once a month. Additionally, respondents believe
it can be used in two main contexts: 1) by individuals to
familiarize themselves with new repositories and 2) by teams to
evaluate the progress on a project. In particular, when asked
how frequently the participants would use Git Truck, 38%
answered that they would use it for occasional events, while
44% answered that they would use it on a monthly basis [15,
L].

An educator noted that Git Truck could be used to follow
progress on student projects. A professional programmer men-
tioned that Git Truck could be used to follow the progress of
major refactorings [N]. Several users mentioned that Git Truck
can be used to get familiar with a project:

“The tool seems useful to ’get a feel’ about a
project”; “The primary use cases [for the tool] I
see are: Familiarising yourself with a new project,
which is a one time thing. [...]”

V. DISCUSSION

a) Limitations of the sampling: The presented user study
had a sample size of 18 respondents (22 including early
responses), which was useful to get a general sense of, for
who Git Truck is useful. To back these claims up empirically,
a larger study could be made. This larger study would have
to include research into how to get more people to respond to
surveys. Our survey got out to a lot of people on social media,
but only a fraction of them responded to the survey. Another
way to gather data, would be to collect automatic usage data

from Git Truck to, for example, see which views are being
used most frequently.

b) Not everybody has npm installed: In the early phases
of the study, we decided to build a local application, as
described in section III. One person on Twitter, mentioned that
they did not want to use the tool, because it involves installing
Node.js, and that they would prefer to use an online tool. A
future study could research how Git Truck as a website might
coexist with Git Truck as a local app, and which kind of users
would use which and why. A website might also be a better
method of getting more people to respond to the survey, as the
barrier to entry would be even lower. This study could also
examine how willing users are to upload private repositories
to online services. This was not researched, as we assumed
that users with private repositories, did not want to share it
with online tools, but this assumption might not be correct.

A user asked for Git Truck as a Docker image, such that
they can run it without having to install npm 23.

c) Need for visualizing multiple projects at once: One
respondent with professional programming experience, men-
tioned that Git Truck did not give them a good overview,
because they wanted to see multiple repositories at once [15,
V]. Git Truck might be more useful to companies using
polyrepos if it showed multiple projects at the same time.

d) Comparison with GitHub Statistics: GitHub also has
contributor statistics. They are “lower resolution” than Git-
Truck and they do not provide the same kind of hierarchical
file-system focused overview, but it could be possible that
some of the information presented by GitTruck could be
gleaned also from there. Our intuition is that the "locality" of
showing files in the context of their folders gives Git Truck an
advantage over the simple statistics presented by GitHub, but
one would have to do design a special experiment to evaluate
this intuition.

e) Generalizability of the findings: We have designed Git
Truck to be as easily usable as possible, and as simple as
possible in order to be able to allow users to install it and try
it on their own. Given it’s simplicity, we believe that some of
the results we discovered would be replicated by other sim-
ilar hierarchical metric-enriched file-focused git visualization
tools, in particular those pertaining to the expected frequency
of use for such a tool, and the context in which such a tool
could be beneficial. However, the limitations of the sampling
discussed at the beginning of this section must be remembered.

f) Missing Telemetry: Some of the questions that we
have asked, could have been answered by telemetry (e.g.
most useful views, frequency of use for the tool, etc.). A
data-based answer would be an important complement to the
self-reporting that we describe in this paper. However, due
to privacy issues we decided to not implement telemetry
in the tool for this study. For the future we believe that
telemetry would be a very valuable tool to use in a context of
asynchronous remote usability testing like our’s.

23https://github.com/git-truck/git-truck/issues/564

https://github.com/git-truck/git-truck/issues/564


g) Bubbles vs. Treemaps: In the answers all the profes-
sionals preferred the tree maps. We believe that this is because
professionals are looking at larger systems than students and
this is why they prefer treemaps. In our own experiments, and
also when generating the images for this paper, as soon as a
system becomes very large, we prefer to switch to the treemap
which makes better use of the limited space.

VI. RELATED WORK

Several works have inspired the design of Git-Truck. For
instance, to create an insightful visualization, Git Truck dis-
plays multiple metrics at once and allows switching between
different views. This approach is explored in greater depth by
Michele Lanza and Stéphane Ducasse [17]. Wattenberger [28]
demonstrates file structures visualized with circle packing, and
several proposals for additional extensions relating to historical
data. Among other things, she proposes a view to see which
files were changed most recently, and which files have the most
commits, both of which are implemented in Git Truck. A few
other works focused on specific benefits of employing visual-
ization (i.e., storytelling), features of versioning platforms (i.e.,
GitHub issues), and libraries (i.e., React). Kumar at al. [8] used
visualizations for storytelling based on GitHub projects and
Fiechter et al. [13] proposed issue tale, a visual narrative of
the events and actors involved in GitHub issues. React-bratus,
a visualization tool specific to React applications, is presented
by Boersma and Lungu [4]. The tool enables the visualization
of the component hierarchy of React applications. Similarly
to Git Truck the expected audience of their tool are students
and educators. CorpusVis [24] visualizes software metrics of
Java software systems from the Qualitas Corpus. In contrast,
Git Truck enables the visualization of software metrics from
Git repositories.

Several studies have visualized Git repositories to analyze
repository’s evolution. To name a few examples, Elsen [10]
proposed VisGi, a directed acyclic graph visualization for
the analysis of branch structures, which is combined with
a Sunburst visualization for branchs’ contents. Andrea [1]
introduced UrbanIt, which uses city visualizations to analyze
software repositories evolution. North et al. [21] presented
GitVS, a system that uses visualization and sonification for
understanding the history of Git repositories. Feist et al. [12]
presented TypeV that visualizes abstract syntax trees from Java
source code to support the analysis of software evolution. Kim
et al. [16] proposed Githru, an interactive visual analytics
system that enables developers to understand the context
of software development history through interactive visual
exploration of Git metadata. RepoVis [11] and Seesoft [9] use
a more information dense visual approach, by having each line
in every file, represented and colored, for displaying metrics
on a per-line basis. RepoVis sets itself apart by having a larger
emphasis on showing the history and timeline of a file, and
allowing full text search within file contents. RepoVis does not
include an evaluation of the solution. In contrast, our inves-
tigation focus particularly on using hierarchical visualization

techniques to provide users multiple views for the analysis of
repository evolution.

A few other studies have visualized addressed collaboration.
Schreiber [23] uses no-link visualizations of team members
and external contributors to analyze collaboration in open-
source systems. Malik [18] proposed a per file visualization
that supports the analysis of authors’ contributions to individ-
ual lines of code. The system uses two types of visualizations:
a stacked bar chart for the analysis of dominant authors and
a Seesoft-like plot for contributions aggregated by functions.
Though these studies focus on the analysis of collaboration,
as opposed to our work, they do not offer specific support for
the analysis of repository evolution.

In summary, as opposed to previous works, Git Truck has
been designed for the analysis of the Truck Factor of Git
repositories. As a design study, Git Truck tackles a complex
and relevant problem in software engineering by choosing
well-known visualization techniques that have proven effective
in other application areas.

VII. FUTURE WORK

According to the study conducted, Git Truck is an overall
easy-to-use tool, where users tend to appreciate the overview
that it gives, about how people contribute to a project. The tool
is mostly useful for academics, i.e. to students and teachers,
allowing them to familiarize themselves with, and follow the
progress of projects.

The primary use-case for Git Truck, according to the survey,
is for students and educators to follow the progress of a
project and better understand its structure. Several respondents
mentioned that they envision Git Truck being useful for getting
familiar with new projects [15, M], [15, P]. In the future
we plan to explore this latter direction further with a user
study specifically focused on problems during onboarding new
developers on a project. We want to discover what views and
sources of information can be integrated to better help with
this process, while at the same time, keeping the tool language
independent

Finally, adding telemetry and collecting actual usage data
from users who opt-in for this, would allow us to even better
understand the needs and the benefits for a tool like Git Truck.

REFERENCES

[1] Ciani Andrea. “UrbanIt: Mobile 3D Git Visualization”.
PhD thesis. Università della Svizzera Italiana, 2015.

[2] Casper Weiss Bang and Mircea Lungu. “Codoc: Code-
driven Architectural View Specification Framework in
Python”. In: 2021 Working Conference on Software
Visualization (VISSOFT). IEEE. 2021, pp. 120–124.

[3] Christian Bird et al. “The Promises and Perils of Mining
Git”. In: Proceedings of the Sixth Working Conference
on Mining Software Repositories. IEEE Computer So-
ciety, May 2009. URL: https://www.microsoft.com/en-
us / research /publication / the - promises - and- perils - of -
mining-git/.

https://www.microsoft.com/en-us/research/publication/the-promises-and-perils-of-mining-git/
https://www.microsoft.com/en-us/research/publication/the-promises-and-perils-of-mining-git/
https://www.microsoft.com/en-us/research/publication/the-promises-and-perils-of-mining-git/


[4] Stephan Boersma and Mircea Lungu. “React-bratus:
Visualising React Component Hierarchies”. English.
In: Proceedings of the 2021 Working Conference on
Software Visualization (VISSOFT). United States: IEEE,
2021. DOI: 10.1109/VISSOFT52517.2021.00025.

[5] Caius Brindescu et al. “How Do Centralized and
Distributed Version Control Systems Impact Software
Changes?” In: Proceedings of the 36th International
Conference on Software Engineering. ICSE 2014. Hy-
derabad, India: Association for Computing Machinery,
2014, pp. 322–333. ISBN: 9781450327565. DOI: 10 .
1145/2568225.2568322. URL: https://doi.org/10.1145/
2568225.2568322.

[6] Frederick Brooks Jr. “No Silver Bullet Essence and Ac-
cidents of Software Engineering”. In: IEEE Computer
20 (Apr. 1987), pp. 10–19. DOI: 10 .1109/MC.1987.
1663532.

[7] Anders Bruun et al. “Let your users do the testing:
a comparison of three remote asynchronous usability
testing methods”. In: Proceedings of the CHI Confer-
ence on Human Factors in Computing Systems. 2009,
pp. 1619–1628.

[8] Shishir Dubey et al. “Data visualization on GitHub
repository parameters using elastic search and Kibana”.
In: 2018 2nd International Conference on Trends
in Electronics and Informatics (ICOEI). IEEE. 2018,
pp. 554–558.

[9] Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner.
“Seesoft-A Tool For Visualizing Line Oriented Software
Statistics”. In: IEEE Trans. Software Eng. 18 (1992),
pp. 957–968.

[10] Stefan Elsen. “Visgi: Visualizing Git branches”. In:
2013 First IEEE Working Conference on Software Vi-
sualization (VISSOFT). IEEE. 2013, pp. 1–4.

[11] Johannes Feiner and Keith Andrews. “RepoVis: Visual
Overviews and Full-Text Search in Software Reposito-
ries”. In: Sept. 2018, pp. 1–11. DOI: 10.1109/VISSOFT.
2018.00009.

[12] Michael D Feist et al. “Visualizing project evolution
through abstract syntax tree analysis”. In: 2016 IEEE
Working Conference on Software Visualization (VIS-
SOFT). IEEE. 2016, pp. 11–20.

[13] Aron Fiechter et al. “Visualizing Github issues”. In:
2021 Working Conference on Software Visualization
(VISSOFT). IEEE. 2021, pp. 155–159.

[14] A. N. Habermann, Lawrence Flon, and Lee Cooprider.
“Modularization and Hierarchy in a Family of Oper-
ating Systems”. In: Commun. ACM 19.5 (May 1976),
pp. 266–272. ISSN: 0001-0782. DOI: 10.1145/360051.
360076. URL: https://doi.org/10.1145/360051.360076.

[15] Thomas Kilbak et al. Git Truck supplemental material.
Zenodo, June 2022. DOI: 10 . 5281 / zenodo . 6769782.
URL: https://doi.org/10.5281/zenodo.6769782.

[16] Youngtaek Kim et al. “Githru: visual analytics for
understanding software development history through git

metadata analysis”. In: IEEE Transactions on Visualiza-
tion and Computer Graphics 27.2 (2020), pp. 656–666.

[17] Michele Lanza and Stéphane Ducasse. “Polymetric
Views-A Lightweight Visual Approach to Reverse Engi-
neering”. In: Software Engineering, IEEE Transactions
on 29 (Oct. 2003), pp. 782–795. DOI: 10.1109/TSE.
2003.1232284.

[18] Saad Malik. “Git repository visualization: visualizing
file authorship and dominance”. In: (2017).

[19] Leonel Merino et al. “A Systematic Literature Review
of Software Visualization Evaluation”. In: Journal of
Systems and Software 144 (June 2018). DOI: 10.1016/
j.jss.2018.06.027.

[20] Christopher R. Myers. “Software systems as complex
networks: Structure, function, and evolvability of soft-
ware collaboration graphs”. In: Physical Review E 68.4
(Oct. 2003). DOI: 10.1103/physreve.68.046116. URL:
https://doi.org/10.1103%2Fphysreve.68.046116.

[21] Kevin J North, Anita Sarma, and Myra B Cohen.
“Understanding Git history: A multi-sense view”. In:
Proceedings of the 8th International Workshop on So-
cial Software Engineering. 2016, pp. 1–7.

[22] Rolf-Helge Pfeiffer and Andrzej Wąsowski. “The De-
sign Space of Multi-Language Development Environ-
ments”. In: Softw. Syst. Model. 14.1 (Feb. 2015),
pp. 383–411. ISSN: 1619-1366. DOI: 10.1007/s10270-
013-0376-y. URL: https://doi.org/10.1007/s10270-013-
0376-y.

[23] Andreas Schreiber. “Visualization of contributions to
open-source projects”. In: Proceedings of the 13th In-
ternational Symposium on Visual Information Commu-
nication and Interaction. 2020, pp. 1–2.

[24] Jack Slater et al. “CorpusVis–visualizing software met-
rics at scale”. In: 2019 Working Conference on Software
Visualization (VISSOFT). IEEE. 2019, pp. 99–109.

[25] Stack Overflow Developer Survey 2021. URL: https://
insights.stackoverflow.com/survey/2021#section-most-
popular- technologies-other- tools. (accessed: 2022-05-
13).

[26] M-A Storey, Casey Best, and Jeff Michand. “Shrimp
views: An interactive environment for exploring java
programs”. In: Proceedings 9th International Workshop
on Program Comprehension. IWPC 2001. IEEE. 2001,
pp. 111–112.

[27] Sergi Valverde and Ricard Sole. “Hierarchical Small-
Worlds in Software Architecture”. In: Dynamics of
Continuous Discrete and Impulsive Systems: Series B;
Applications and Algorithms 14 (Jan. 2007), p. 1.

[28] Amelia Wattenberger. Visualizing a Codebase. 2021.
URL: https://githubnext.com/projects/repo-visualization.
(accessed: 2022-05-09).

https://doi.org/10.1109/VISSOFT52517.2021.00025
https://doi.org/10.1145/2568225.2568322
https://doi.org/10.1145/2568225.2568322
https://doi.org/10.1145/2568225.2568322
https://doi.org/10.1145/2568225.2568322
https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1109/VISSOFT.2018.00009
https://doi.org/10.1109/VISSOFT.2018.00009
https://doi.org/10.1145/360051.360076
https://doi.org/10.1145/360051.360076
https://doi.org/10.1145/360051.360076
https://doi.org/10.5281/zenodo.6769782
https://doi.org/10.5281/zenodo.6769782
https://doi.org/10.1109/TSE.2003.1232284
https://doi.org/10.1109/TSE.2003.1232284
https://doi.org/10.1016/j.jss.2018.06.027
https://doi.org/10.1016/j.jss.2018.06.027
https://doi.org/10.1103/physreve.68.046116
https://doi.org/10.1103%2Fphysreve.68.046116
https://doi.org/10.1007/s10270-013-0376-y
https://doi.org/10.1007/s10270-013-0376-y
https://doi.org/10.1007/s10270-013-0376-y
https://doi.org/10.1007/s10270-013-0376-y
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-other-tools
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-other-tools
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-other-tools
https://githubnext.com/projects/repo-visualization

	Introduction
	git-truck
	Layouts for visualizing hierarchical file organization
	Predefined Views on a Repository
	Interaction and Navigation
	Branch switching
	Repository explorer
	Zooming
	User merging
	Hiding files and folders
	Details on demand

	Usage

	Architecture
	Front-End and Back-End
	The Analyzer
	Chart layout generation

	User Evaluation
	Method
	Results

	Discussion
	Related work
	Future work

