
Can Git Repository Visualization Support Educators
in Assessing Group Projects?

Mircea Lungu1, Rolf-Helge Pfeiffer1, Marco D’Ambros2, Michele Lanza2 Jesper Findahl2
1: University of Copenhagen, Denmark

2: Software Institute - Università della Svizzera italiana, Switzerland

Abstract—In the past years numerous software visualization
tools have been introduced to support the analysis of software
systems and their evolution as captured in the versioning systems.
Usually the target audience of such tools comprises software
engineering professionals. In this paper we argue that such
tools are also beneficial for educators who need to evaluate
the quality of software systems developed by students. However,
since the needs of educators are different than those of the
software engineering professionals, we discuss several educator
needs first. We report several usage examples that we believe are
useful for educators when using repository visualization tools.
We illustrate them with examples from several student projects
from different courses in two universities. We conclude with a
series of considerations that should be heeded by both educators
and future tool-builders.

I. INTRODUCTION

Visualization approaches have been proposed and adopted
for a long time to support software engineers in understand-
ing the structure and evolution of software systems [1]–[5].
With the ultimate goal of easing the complexity of software
system development, researchers have also investigated how
the usage of visualization approaches can improve software
maintenance tasks, by performing experiments [6]–[8] and
controlled studies [9], [10]. However, with the exception of
algorithm animation [11], [12], very little work has been done
about the usage of such tools in education.

We argue that a special class of educators that can ben-
efit from visualization tools are those who must evaluate
projects in software engineering, human-computer interaction,
and other group-based projects. Nowadays, many such group
projects use git and GitHub for supporting collaborative pro-
gramming work [13], [14]. Such projects can be of significant
size and assessing the individual contributions of the group
members can be challenging [14]. Indeed, educators evaluating
large projects in a short time, have a very different context than
other stakeholders supported by visualization tools:

• Reverse engineers aim specifically at making sense of the
code and have usually plenty of time for understanding
a subject system.

• Developers that are “onboarded” have ample time and
also have access to the expertise of senior colleagues.

• Solo-developers who visualize their own software to
identify improvement or refactoring candidates have deep
expertise of their own code.

• Technology or domain experts have resources to learn
and adopt specialized visualization tools over time.

II. ARE EDUCATORS A SPECIAL KIND OF USER FOR
REPOSITORY VISUALIZATION TOOLS?

We believe the following requirements and constraints are
special to educators who have to assess group projects that
include a programming component:

1) The need for assessing projects of considerable size.
Often, the result of a software engineering, human-
computer interaction, or thesis project is a multi-person
multi-month software system that can easily reach tens
of thousands of lines. This is much larger than for
projects in algorithms and other programming courses,
where educators usually can read a complete solution.

2) The need for expedite assessment since often the source
code of the project is only one of multiple deliverables
and an educator’s time is limited. Indeed, often require-
ments, problem statement, user evaluation, experimental
design, etc. are just as essential for educators to assess
and evaluate.

3) The need to assess also the individual contributions
and not only the final result. Often, when several stu-
dents submit a software repository for a group project,
their contributions are not the same. Some students
might focus on particular parts of the project, and some
may not contribute any code at all to the code base.
Being able to assess individual contributions can help
educators to steer conversations with student groups.

4) The need to evaluate many technologies and many
languages. Often, educators teach more than one course
at a time and supervise multiple thesis projects si-
multaneously. Each of these courses is likely to be
using different languages, frameworks, and technologies.
Consequently, to help assess all these heterogeneous
projects, educators would benefit from a tool that would
be as technology-independent as possible.

5) The need for privacy for the analyzed code. Educators
must often assess private or institutional repositories,
which are usually not shared publicly via software forges
like GitHub, GitLab, Bitbucket, etc. They also need to
visualize projects for which the source code might be
protected by an NDA.

Assumptions. To summarize and clarify our assumptions
about educators, students, and student projects that delineate
the scope of our work, we list the following assumptions that
frame the context for this paper:



Educators need to evaluate the code of student projects as
part of the final assessment but they have limited time for the
task, e.g., half an hour per group. If complete evaluation is
impossible, they want to have a starting point for discussing
with students at the final assessment.

Projects being assessed are multi-month multi-person
projects of sufficient complexity that make them impossible
to exhaustively assess within constrained time, i.e. no time to
read complete sources.

Students work in groups and use file-based version control
systems that track changes and their authors (e.g., git).

III. USING GIT-TRUCK FOR REPOSITORY VISUALIZATION

To investigate the use cases presented in this paper, we used
a visualization tool named git-truck [15]. which visualizes
the structure of a git repository using hierarchical metric-
enhanced layouts, such as, circle packing visualizations [16]
or tree maps [17]. The tool presents containment structures of
directories and files in such a way that the visual size of files
is proportional to their size in bytes1

On top of the repository structure git-truck uses color
maps to highlight evolution derived metrics that can be either
continuous (e.g., color intensity proportional to the number
of commits to a given file), or discrete (e.g., highlighting
only those files that have a single author). Several such
visualizations are presented in the next Section and explained
in-situ.

All visualizations are highly interactive with support for
filtering, zooming, and presentation of details on demand.

For inspection, git-truck supports interactive author-
unification, i.e., multiple authors can be grouped into single
logical authors and co-author attribution, i.e. commit co-
authors that are identified via the Co-authored-by tag in commit
messages are extracted. Such a feature is especially relevant
in pair programming.

Against the increasingly popular trend for online software-
as-a-service, git-truck is meant to be executed directly on
personal computers from a local clone of a git repository.
The installation instructions and source code for the tool are
available online at: https://github.com/git-truck/git-truck. For
the figures generated in this paper we used version 1.0.3 of
the tool.

IV. USAGE EXAMPLES

The following usage examples of a software repository vi-
sualization tool are generated by educators from IT University
of Copenhagen, Denmark (ITU) and Università della Svizzera
italiana, Switzerland (USI). They are based on observations
derived from four different courses at these two institutions
and we illustrate each with at least one example.

A. Discovering Single-authored Components of Systems

The Single Author View in git-truck highlights in red single-
authored files with the aim of supporting fast assessments of

1Size in bytes is used as a metric since it is uniformly available for plain
text as well as binary files, which are both present in any large projects [18].

Figure 1. Component of a system which is mostly created by a single author.

the degree of actual group work or the lack thereof. It allows
educators to quickly detect components or projects without
collaboration amongst students.

Figure 1 shows the infrastructure-as-code specifications
(with terraform) submitted as a component of a group project
in the DevOps, Maintenance, and Software Evolution 2 course
at ITU. This is a zoom-in on the terraform folder from a bigger
project. The visualization suggests that although the group has
five members almost all the work on this component has a
single author. During the oral exam we give the other group
members the chance to discuss infrastructure-as-code concepts
but only one can do in any meaningful way.

B. Investigating Responsibility Distribution in a Project

The Top Contributor View colors each file in a repository ac-
cording to the author who changed (both added and removed)
most lines of code in the file throughout the history. The goal is
to support gauging how work is distributed between members
in the project or in specific areas of it.

Figure 2. A system with a good balance of contributor responsibilities

Figure 2 shows the Top Contributors view in another
repository from the DevOps, Software Evolution and Software
Maintenance course at ITU. Visual inspection suggests that all
the members (albe–green, Adrian–ochre, Thomas–dark-green,

2https://github.com/itu-devops/lecture notes

https://github.com/git-truck/git-truck
https://github.com/itu-devops/lecture_notes


Joachim–scarlet) worked on all parts of a backend system,
though the scarlet author is top contributor for a lower amount
of files3 Compare this with Figure 3 which presents a project
that creates a data analysis platform in the course Visual Ana-
lytics Atelier4 at USI. Here a single author (Student 1) is top
contributor to most of the code files in the project. Since the
project goal is that students practically experience composition
of a larger application from independently taught components,
the pattern shown in Figure 3 represents a starting point for a
discussion with students about individual contributions.

Figure 3. A system with one author dominating the contribution

Note. In one case, git-truck visualized a single author as
Top Contributor with all the other project group members
missing. Discussions of that visualizations with the students
revealed that the “top contributor” is a novice git user who
accidentally deleted the entire repository and subsequently
added all contents again. This is a reminder that, educators
should not blindly act based on the visualizations but rather
discuss them with students.

git-truck provides a rudimentary feature for selecting the
last commit up to which the analysis can be done. With
the help of this feature, an educator can spot projects where
collaboration first becomes an issue after a certain commit.

C. Gaining High-Level Architectural Insights

The File Extension View colors files according to their ex-
tensions besides visualizing them proportional to their size and
folder containment hierarchy. That view is particularly useful
to gain insights into the structure of multi-lingual systems. For
example, in the Technical Interaction Design course at ITU
– an introductory web-development course in which multiple
groups implemented the same front-end with React – we
observed two extremes of code organization: (1) some groups
decided to rely on one big CSS file and many JavaScript files,
see Figure 4, while others decided to (2) distribute CSS files
across the system, see Figure 5 (yellow files are JavaScript
and violet files are CSS).

3However, after discussing with students and after inspecting a second front-
end repository of the same group (not illustrated), the perceived and assessed
contributions are more or less equal

4https://search.usi.ch/en/courses/35263637/sde-atelier-visual-analytics

Figure 4. A system in which students create a single CSS file (violet)

After observing these architectural extremes, we realized the
importance of including discussions of file organization in the
future iterations of the course.

Figure 5. A system in which stylesheet files (violet) are near their components

D. Uncovering Critical Components of a System

git-truck provides a Number of Commits view, which
highlights a repository’s files that are most changed. Files are
colored with a gradient proportional to the number of com-
mits that modify them. Under the assumption that frequently
changed files are most relevant [19], educators can direct their
assessment to most relevant components.

Figure 6 shows the Number of Commits view for Maths

Camp (https://github.com/MathsCamp/MathsCamp), a system
for adaptive maths practice developed by two master stu-
dents at ITU. The view highlights that one single file is
disproportionately changed during the project evolution. This
Javascript file is also the largest file in the system. Closer
assessment of this file reveals a God Class which is responsible
for everything from user interface interactions over database
querying to scheduling.

Before git-truck was available, one of the authors of this
paper browsed the repository to assess the project but failed to



Figure 6. A system where most change effort goes into a single file

observe the bad design since the respective file is hidden quite
deeply in the directory tree and has an inconspicuous name.

Note. Files that can be relevant for group project work and
that change often, might not contain source code: e.g., README,
CHANGELOG, package-lock.json, etc. A tool should support easily
filtering out such files in order to let the critical parts of the
system stand out.

V. DISCUSSION

A. Limitations Of Metrics-Based Repository Visualization

Metrics based views like the ones presented in the previous
sections can tempt an educator to jump too easily to con-
clusions. However, educators should not rely solely on the
visualizations without confirming hypotheses with students or
triangulating with other sources. Two examples of situations
that can throw off contribution metrics are: (1) automatically
generated code and (2) files being committed that should not
be versioned. Besides this, as the example in subsection IV-B
in which a student removes and adds all contents of a
repository, there will always be unexpected usage patterns.
A repository visualization tool can highlight these unusual
patterns but it is the duty of the educator to investigate them.

B. Educator-specific Tool Support

We believe that educator-specific functionality increases
usefulness of a software repository visualization tool for
assessment of group projects. For tool-builders that aim to
support educators, we list a series of functionalities that we
believe are essential to increase the adoption of such tools.

1. Interactivity. In our experience, interactivity, e.g. filtering
of which kinds of files are to be visualized or zooming in on a
particular folder, is critical for assessment. Before git-truck,
we relied on git command line tools like git log, git shortlog,
git blame and various scripts that wrap these tools to assess
student repositories. Even though more versatile, their gener-
ality means that some use cases (e.g. focusing the analysis on
a given subfolder) are not easy to achieve.

2. Author unification. git-truck’s author unification fea-
ture is essential when assessing student repositories. Of-
ten students commit using multiple user names when their
git configuration differs across computers, e.g., lab comput-
ers, private laptops, or home computers. Author-unification
could rely completely on git mailmap files (https://git-
scm.com/docs/gitmailmap), but students configure them rarely.

3. Configurable thresholds. The Single Author View has
a hard-coded threshold of 100% authorship embedded in its
definition. Arguably, a threshold of 98% could still qualify
as a very useful one, but the tool we use does not support
the changing of the threshold. Increased configurability would
empower educators but has to be balanced against ease of use.

4. Automatic filtering of files. Currently, git-truck supports
manual filtering of the kinds of files that are visualized.
However, manual filtering is laborious and repetitive especially
when assessing multiple similar projects. Future research could
aim to detect – based on language independent heuristics –
files of low relevance, such as, automatically generated code.

5. Integrating commit messages. Even though contributions
– in terms of number of commits or size of applied changes –
may be equally distributed amongst student group members,
the kind of contributed work may vary. Currently, we inspect
commit messages with git shortlog -n in combination with
git-truck’s visualizations. Ideally, commit messages would be
integrated and browse-able directly inside of the tool.

6. Supporting multi-repositories. Depending on projects and
depending on course design, student groups use mono- or
multi-repositories to organize their work. A tool like git-truck

(and most of the tools we are aware of, including the GitHub
statistics) only work with mono-repositories. An educator has
to visualize a multi-repository as a series of multiple individual
mono-repositories comparison among which is difficult.

C. Generalizability

git-truck is designed with usability in mind. However, none
of the visualizations it implements are unique or difficult to
implement (the interaction requires more effort though). Thus,
we argue the usage examples presented in section IV are likely
to be useful for other educators using similar tools.

VI. RELATED WORK

Both Wattenberger [20] and Tornhill [19] use circle packing
to highlight metrics on top of repository structure. However,
their work is not targeted at educators, but rather developers
and business responsibles. Furthermore, although both pro-
vide online systems that could possibily visualize non-private
GitHub repositories, none of the two services has the interac-
tive nature that we argue for in this paper. Raclet and Silvestre
proposed Git4School, an analytics dashboard [21] that enables
a lecturer to follow the work of the students, commit by
commit, to identify students experiencing difficulties. Their
work is intended for a kind of educator and student in a context
where the educator needs to guide individual student closely.

Kim et al. presented an interactive git repository visualiza-
tion tool called Githru [22]. They aim to support developers



and domain experts in understanding a projects development
history focusing on properties of the git commit graph. That
is different to the goal presented in this paper.

Specialized tools focus on certain aspects of git reposito-
ries only. For example, Cosentino et al.’s Gitana [23] infers
those authors that are most crucial for a software project (it
computes truck factors), Gource (https://gource.io/) animates
authors and their contributions over time, the Git Timeline
Generator (https://www.preceden.com/git) visualizes contri-
bution frequencies over time, git-of-theseus creates static
visualizations of repository growth over time, or GitHub’s
built-in repository visualizations present activity statistics, like
commit frequencies, number of contributors, etc.

Other tools target other interaction mechanisms. For ex-
ample Ciani et al.’s UrbanIt [24], relies on a city metaphor
(a tree map with an added third dimension for file size) to
visualize logical structure of software repositories on mobile
device with touch-screen, or Scott-Hill et al.’s DashVis [25]
aims to support teams in tracking progress using large touch
displays and visualization techniques.

VII. CONCLUSIONS AND FUTURE WORK

We argued that educators are in some cases a unique
kind of user for software visualization tools. We have shown
with multiple case studies from multiple courses and two
universities that git repository visualization can be an aid for
the educator in assessing group projects.

However, the case studies we presented are based on the
experience of a handful of educators who used a specific tool
in group project assessment. In the future we plan to extend
the study to more educators to arrive at stronger conclusions
regarding educator needs and guidelines for both educators
and tool-builders. Moreover we plan to investigate in which
way such tools can be used during the course of the semester
and not only as support for the final evaluation.
Acknowledgements. D’Ambros gratefully acknowledges the
financial support of the Swiss National Science Foundation
through the NRP-77 project 187353.

REFERENCES

[1] M.-A. Storey, K. Wong, F. D. Fracchia, and H. A. Muller, “On
integrating visualization techniques for effective software exploration,”
in Proceedings of VIZ’97: Visualization Conference, Information Visu-
alization Symposium and Parallel Rendering Symposium. IEEE, 1997,
pp. 38–45.

[2] J. I. Maletic, A. Marcus, and M. L. Collard, “A task oriented view of
software visualization,” in Proceedings first international workshop on
visualizing software for understanding and analysis. IEEE, 2002, pp.
32–40.

[3] N. Chotisarn, L. Merino, X. Zheng, S. Lonapalawong, T. Zhang, M. Xu,
and W. Chen, “A systematic literature review of modern software
visualization,” Journal of Visualization, vol. 23, no. 4, pp. 539–558,
2020.

[4] R. L. Novais, A. Torres, T. S. Mendes, M. Mendonça, and N. Zazworka,
“Software evolution visualization: A systematic mapping study,” Infor-
mation and Software Technology, vol. 55, no. 11, pp. 1860–1883, 2013.

[5] H. B. Salameh, A. Ahmad, and A. Aljammal, “Software evolution
visualization techniques and methods-a systematic review,” in 2016
7th International Conference on Computer Science and Information
Technology (CSIT). IEEE, 2016, pp. 1–6.

[6] M. Sensalire, P. Ogao, and A. Telea, “Evaluation of software visualiza-
tion tools: Lessons learned,” in 2009 5th IEEE International Workshop
on Visualizing Software for Understanding and Analysis, 2009, pp. 19–
26.

[7] P. Khaloo, M. Maghoumi, E. Taranta, D. Bettner, and J. Laviola,
“Code park: A new 3d code visualization tool,” in 2017 IEEE Working
Conference on Software Visualization (VISSOFT), 2017, pp. 43–53.

[8] T. Schneider, Y. Tymchuk, R. Salgado, and A. Bergel, “Cuboidmatrix:
Exploring dynamic structural connections in software components using
space-time cube,” in 2016 IEEE Working Conference on Software
Visualization (VISSOFT), 2016, pp. 116–125.

[9] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities:
a controlled experiment,” in 2011 33rd International Conference on
Software Engineering (ICSE), 2011, pp. 551–560.

[10] B. Sharif and J. I. Maletic, “The effect of layout on the comprehension
of uml class diagrams: A controlled experiment,” in 2009 5th IEEE
International Workshop on Visualizing Software for Understanding and
Analysis, 2009, pp. 11–18.

[11] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko, “A meta-study of
algorithm visualization effectiveness,” Journal of Visual Languages &
Computing, vol. 13, no. 3, pp. 259–290, 2002.

[12] J. Sorva, V. Karavirta, and L. Malmi, “A review of generic program
visualization systems for introductory programming education,” ACM
Transactions on Computing Education (TOCE), vol. 13, no. 4, pp. 1–
64, 2013.

[13] A. Zagalsky, J. Feliciano, M.-A. Storey, Y. Zhao, and W. Wang, “The
emergence of github as a collaborative platform for education,” in
Proceedings of the 18th ACM Conference on Computer Supported
Cooperative Work Social Computing, ser. CSCW ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 1906–1917.
[Online]. Available: https://doi.org/10.1145/2675133.2675284

[14] M. Tushev, G. Williams, and A. Mahmoud, “Using github in large
software engineering classes. an exploratory case study,” Computer
Science Education, vol. 30, pp. 155 – 186, 2020.

[15] K. Højelse, T. Kilbak, J. Røssum, E. Jäpelt, L. Merino, and M. Lungu,
“Git truck: Hierarchical metric-enriched file-focused git project visual-
izations for truck factor analysis,” in 2022 IEEE Working Conference
on Software Visualization (VISSOFT), 2022, pp. 1–11.

[16] W. Wang, H. Wang, G. Dai, and H. Wang, “Visualization of large
hierarchical data by circle packing,” in Proceedings of the SIGCHI
conference on Human Factors in computing systems, 2006, pp. 517–
520.

[17] B. Johnson, “Treeviz: treemap visualization of hierarchically structured
information,” in Proceedings of the SIGCHI conference on Human
factors in computing systems, 1992, pp. 369–370.

[18] R.-H. Pfeiffer, “What constitutes software? an empirical, descriptive
study of artifacts,” in Proceedings of the 17th International Conference
on Mining Software Repositories, 2020, pp. 481–491.

[19] A. Tornhill, “Your code as a crime scene: use forensic techniques to
arrest defects, bottlenecks, and bad design in your programs,” Your Code
as a Crime Scene, pp. 1–218, 2015.

[20] A. Wattenberger. (2021) Visualizing a codebase. [Online]. Available:
https://githubnext.com/projects/repo-visualization

[21] J.-B. Raclet and F. Silvestre, “Git4school: A dashboard for supporting
teacher interventions in software engineering courses,” in European
Conference on Technology Enhanced Learning. Springer, 2020, pp.
392–397.

[22] Y. Kim, J. Kim, H. Jeon, Y.-H. Kim, H. Song, B. Kim, and J. Seo,
“Githru: visual analytics for understanding software development history
through git metadata analysis,” IEEE Transactions on Visualization and
Computer Graphics, vol. 27, no. 2, pp. 656–666, 2020.

[23] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “Assessing the bus factor
of git repositories,” in 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). IEEE, 2015,
pp. 499–503.

[24] A. Ciani, R. Minelli, A. Mocci, and M. Lanza, “Urbanit: Visualizing
repositories everywhere,” in 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2015, pp. 324–
326.

[25] B. Scott-Hill, C. Anslow, J. Ferreira, M. Kropp, M. Mateescu, and
A. Meier, “Visualizing progress tracking for software teams on large
collaborative touch displays,” in 2020 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 2020,
pp. 1–5.

https://doi.org/10.1145/2675133.2675284
https://githubnext.com/projects/repo-visualization

	Introduction
	Are educators a special kind of user for repository visualization tools?
	Using Git-Truck for Repository Visualization
	Usage Examples
	Discovering Single-authored Components of Systems
	Investigating Responsibility Distribution in a Project
	Gaining High-Level Architectural Insights
	Uncovering Critical Components of a System

	Discussion
	Limitations Of Metrics-Based Repository Visualization
	Educator-specific Tool Support
	Generalizability

	Related Work
	Conclusions and Future Work
	References

