Architectural Lens: A Tool for Generating Comprehensible

Diagrams
1% Jesper Kronborg Rusbjerg 274 Nikolai Perlt Andersen
MSc in Computer Science MSc in Computer Science
IT Uniaversity of Copenhagen IT University of Copenhagen
Copenhagen, Denmark Copenhagen, Denmark
Course code: KISPECI1SE Course code: KISPECI1SE
jrus@itu.dk npan@itu.dk

May 30, 2023

Abstract

In this report, we introduce Architectural Lens, an automated diagram-generation tool. The tool’s purpose
is to tackle the challenges of creating comprehensible architectural documentation and keeping it up-to-date.

Architectural Lens, demonstrated through a Python-based implementation, is designed to be language-
agnostic, and capable of being adapted to various programming languages. The tool empowers developers to
generate scoped views of the system architecture, enhancing system comprehension and maintainability. In
addition to scoped views, a key feature of Architectural Lens is its ”difference view”. This feature creates a
visual comparison between the local state of the codebase and a specified version, typically the main/master
branch in a remote git repository, added or deleted packages and dependencies are colour-coded for clarity.
This clear visualization of changes supports developers in maintaining an accurate understanding of the
system architecture and what changes.

To assess the tool’s effectiveness, workshops were conducted with professional developers working in com-
plex software environments, enabling them to apply the tool to their own real-world projects. Subsequently,
a questionnaire was administered to collect feedback from the participants. The feedback was analyzed using
thematic analysis to evaluate the tool’s impact on creating comprehensible documentation and ensuring its
up-to-dateness.

The feedback received from the participants emphasized the effectiveness of Architectural Lens in gen-
erating accurate and comprehensible architectural documentation. It not only facilitated the creation of
comprehensible and up-to-date diagrams but also offered additional benefits such as promoting a clear un-
derstanding of specific system components, facilitating onboarding, improving team communication and
enhancing system maintainability. These findings highlight the significant impact of Architectural Lens on
various aspects of software development.

This conclusion establishes that Architectural Lens effectively addresses the challenges associated with
creating and maintaining comprehensible architectural diagrams for complex software systems. The re-
search outcomes provide valuable insights into enhancing architectural documentation practices in software

development and lay a solid foundation for further exploration and refinement in this domain.

IT University of Copenhagen CONTENTS

Contents

.. 4

12 Background| 6
2.1 Challenges in Software Documentation|. 6

2.2 Software Life Cycle and the Continuous Process of Architectural Documentation| . . . 6
2.2.1 Planning and Analysis|. oo 6

2.2.2 Development and Testing| 7

12.2.3 Deployment and Maintenance] 7

12.3 dSoftware Architecture Adaptability]. oL oo 7

2.4 Software Architecture Documentation in Complex Systems| 8
2.4.1 The Complexity of Software Systems| 8

12.4.2 Keeping Documentation Up-to-Date| 8

12.4.3 Documenting Interactions and Dependencies| 8

12.5 Agile Practices and Architectural Documentation|. 8
2.5.1 The Agile Perspective on Documentation| 8

12.5.2 Balancing Agility and Documentation| 9

13 Related workl e 10
3.1 Existing Tools| o 10

13.2 Manual drawing approach| L L 10

13.3 Diagrams as code|. e 10

3.4 Automated Toolsl 10
B.4.1 Swimml e 11

13.4.2 Pyreversel 11

18.4.3 Archjaval Lo 11

13.5 Diagrams as Code and Automated Tools|. 11

4 Methodl e 12
4.1 Literature Review, Search Strategy and Criteria) 12
4.1.1 Background|.o L 12
BEI2Toold . . . o oo 12

4.2 Tool Development and Iterative Feedback| 12
(43 FEvaluation of Architectural Tend 13

4.4 Workshop| e 13

4.5 Analysis | e e 14

b The automated tooll L 15
b1 Architectural Lens| oL 15

jrus - npan - Thesis 2023 Page 1 of

IT University of Copenhagen CONTENTS

5.2 Tool Architecture & How the Tool Worksl 15
[5.2.1 Parsing the Source Code with an Abstract Syntax Tree (AST) 16

5.2.2 Generating Render View: Converting the Graph into PlantUML and Filter- |

ing Modules| 16

5.2.3 Creating Difference Views: Extending the Render View| 16

5.2.4 Rendering Diagrams and Difference Views Using a PlantUML Server|{ 16

-3 Architectural-Lens: Implementation details & Developers perspective] 17
5.3.1 Language Agnostic|. L 17

B32 Tnstallationl 17

9.3.3 Configuration and Usage| o oL 17

16 Applying the Tool: Demo Project|. o 20
6.1 Setting Up & Entire Domain View| 20

6.2 Package Filtering, Depth View, Ignoring Packages| 21

6.3 Difference Viewl. e 24

6.4 GitHub Action for the Demo Project|{. o oL 26

|7 Case Study: Applying the tool on Zeeguu| oo oL 28
7.1 Scoping the domain: Core and API view of Zeeguu|. 28

7.2 Focusing on Specific Domain Components| 32

7.3 Identifying Architectural Errors|. oo 34
... 36
8.1 Questionnaire] L. e e 36

9 Analysis| 38
9.1 Improved understanding and spot architectural errors] 38

9.2 Onboarding| L e 38

19.3 Architectural alignment|o oo o 38

9.4 Usability] e 39

19.5 Up-to-datenss & scoped views|. 39

9.6 Human errorl o o e 39

9.7 Improvements|. 39

[0 DISCUSSION - « « « v v v e e e e e e 41
[10.1 ~ Comprehensible and up-to-date diagrams| 41

[10.2 Scoped Vviews| e e e 41

110.3 Software Life Cycle|. oo o 42

[10.4 Omboarding| 42

110.5 Enhancing Quality Attributes: Impact of Architectural Lens| 43
110.6 Usability and ease of use|. 43
110.7 Understanding Comprehensible Diagrams| 43

I11 Limitations & Reliabilityl 45
[11.1 ~ Sample Size and Diversity| L 45
[11.2 Methodological Limitations| L 45
1.3 Tool Limitations 46

I11.4 Diagram Limitations|. 46

(2 Conclusion] 47

jrus - npan - Thesis 2023 Page 2 of

IT University of Copenhagen CONTENTS

13 Future Workl e e e 48

jrus - npan - Thesis 2023 Page 3 of

IT University of Copenhagen Introduction

1 Introduction

Software architectural documentation is an important part of software development, as it offers a high-
level understanding of a system’s structure and design. Effective architectural documentation can facilitate
communication among developers, thereby promoting code maintainability and helping prevent the decline
of a system’s architecture quality. [1]

Despite its importance, creating effective architectural documentation is a complex task, often fraught
with common errors and oversights. Inadequate documentation is widespread in software development [2],
often resulting from time constraints, lack of prioritization, or insufficient tooling. [3]

One of the most prevalent is the issue of outdated documentation. As the system evolves, architectural
documentation can quickly become obsolete if it’s not regularly maintained [2].

Another common issue in software documentation is the generation of overly complicated architectural
diagrams. When diagrams are too detailed or contain unnecessary information, they can obstruct clear
understanding and can hinder effective communication among developers [2].

Keeping architecture documentation up-to-date in complex systems can be a major challenge. [2] Changes
to one component can have ripple effects across the system, requiring updates to multiple documentation
artefacts. Additionally, the documentation process itself may be slow and cumbersome, making it difficult
to keep up with changes in the system. [4]

To investigate the problems of outdated documentation and overly complicated diagrams, the study
focuses on the following research question: "How can the utilization of an automated diagram-
generation tool help the creation of software architectural documentation, such that the dia-
grams are comprehensible and remain up to date, and what are the potential other benefits
of using such a tool?”. By automated diagram-generation tool, the report refers to a tool that can
accurately generate architectural diagrams directly from a system’s source code. Additionally, we consider
a complex system as one with more than 25 interconnected modules. It is important to note that there is
no universally accepted standard for complexity, as it can vary depending on multiple factors. Additionally,
by comprehensible diagrams, we refer to diagrams that can be understood by a developer.

In the realm of automated diagram-generation tools, facing the complexities of modern systems has been
a recurring challenge, frequently leading to static, convoluted, and difficult-to-interpret views. To tackle
these limitations, we introduce our contribution: Architectural Lensﬂ a Python-based automated diagram-
generation tool.

Architectural Lens derives its name from its ability to provide developers with scoped and customized
views of their systems. Developers have the freedom to determine the level of detail for each view, allowing
them to create scoped views of the domain model. This flexibility enables adjustments to be made to simplify
complex views, ensuring better comprehension and alignment with their specific requirements. Thereby, by
leveraging Architectural Lens, developers can visualize and review specific sub-parts of their systems. Lastly,
Architectural Lens has a feature which highlights differences in the source code between two branches.

The diagrams that Architectural Lens generates are rendered in UML, a standard graphical language for
illustrating software systems [5]. These UML diagrams are crafted using PlantUML, a tool that facilitates the
generation of diagrams from simple textual descriptions. Our focus in this study is on module diagrams, it
is important to note that the principles and concepts discussed may be transferable across different diagram

types, such as domain or class diagrams, suggesting the broader applicability of our research.

Thttps://github.com/Perlten/Architectural-Lens

jrus - npan - Thesis 2023 Page 4 of

IT University of Copenhagen Introduction

To avoid linking Architectural Lens to a specific language, we will refer to Python packages as "modules”
and Python modules as ”files” throughout this report. However, it is important to note that we will use
Python-specific terminology when describing technical details about Architectural Lens. The use of Python-
specific language in this context of describing Architectural Lens ensures precision and clarity when discussing
Architectural Lens’s implementation details.

To answer the research question, we will first explore the background and related work on software
architectural diagrams, their importance, and the limitations of existing tools. We will then describe the
tool, Architectural Lens. Next, we will conduct workshops introducing the tool and how to use it to developers
and allow them to try it on their projects. Subsequently, participants will complete a questionnaire to provide
feedback on the effectiveness of Architectural Lens in addressing the challenge of creating and maintaining
comprehensible architectural documentation, as well as any suggestions for improvements or future work.

Based on the collected feedback, we will conduct a thematic analysis to examine the results and discuss
their implications. This will be followed by a discussion of the limitations and reliability of the research.
Finally, we will present a concise conclusion summarizing our contributions, findings, and future work.

Through our research and development efforts, we strive to offer a viable solution for maintaining up-to-
date and comprehensible architectural diagrams for complex systems. By utilizing Architectural Lens, we

aim to improve software systems’ overall quality, maintainability, and understandability.

jrus - npan - Thesis 2023 Page 5 of

IT University of Copenhagen Background

2 Background

This section explores the challenges and best practices for software architecture documentation in various
contexts, such as continuous software development, software life cycle stages and complex systems. Effective

documentation ensures software systems remain adaptable and maintainable. [6] [7]

2.1 Challenges in Software Documentation

Numerous studies have been conducted to identify the challenges that developers face while creating software
documentation. For example, Rost et al. (2013) conducted a survey of 147 developers to investigate their
experiences with software architectural documentation. The study identified four key findings related to the

challenges of creating and maintaining documentation. [2]
1. Architecture documentation is often not up-to-date.
2. Architecture documentation is often provided in a “one-size-fits-all” manner.
3. Architecture documentation is often inconsistent.

4. Architecture documentation does often not provide sufficient navigation support to find the right

information easily.

In 2020, a paper titled ” Software Documentation: The Practitioners’ Perspective” provides further insight
into the challenges that developers encounter with software documentation. In addition, the paper also
highlights the specific areas where developers find the documentation to be lacking regarding up-to-dateness.

According to the paper, the two most significant issues are [3]:
1. Missing documentation for a new feature/component (69%)
2. Outdated/Obsolete references (64%)

The aforementioned paper also highlights the most significant concerns of developers regarding the read-

ability of software documentation, which include |[3]
1. Clarity (88%)

2. Conciseness (49%)

2.2 Software Life Cycle and the Continuous Process of Architectural Documen-

tation

Software development is a continuous process that encompasses various stages [§]. In this section, we present
the role of software architecture documentation in different stages of the software life cycle and how these

insights inspire our proposed solution.

2.2.1 Planning and Analysis

During this stage, documentation clarifies system requirements and design, promotes discussions, and en-

sures the development team comprehends both business and technical needs. [9] The upfront creation of

jrus - npan - Thesis 2023 Page 6 of

IT University of Copenhagen Background

documentation and architectural views emphasizes the importance of generating architectural documenta-
tion or system views throughout development. Continuously generating documentation enables comparisons
with the original plans and facilitates discussions to confirm that the implemented architecture aligns with
the initial design and requirements. Despite these precautions, it’s important to note that architectural
knowledge can be lost as soon as development begins, especially if the architectural documentation and the
code start to diverge [9]. This lack of conformance can render the documentation irrelevant and of little use

to developers [9].

2.2.2 Development and Testing

During the development and testing stage, documentation plays an important role in understanding the
system’s architecture, modules, and dependencies, reducing errors and inconsistencies [9].

There are two types of documentation to consider in this context. First, documentation is created prior
to system development, such as architectural plans or initial design documents. Such documents are valuable
for understanding the initial thoughts and intended structure of the system. While this documentation may
not fully reflect the actual system as it evolves over time, it provides valuable insights into the initial vision
and intended quality attributes of the system.

Second, documentation created during development that accurately captures the evolving system ar-
chitecture is important. Up-to-date documentation aids developers in effectively navigating the codebase,
understanding module purposes and responsibilities, and ensuring a clear understanding of the system’s

structure.

2.2.3 Deployment and Maintenance

Architectural documentation plays an important role in aiding troubleshooting, and ongoing maintenance.
[10] [11] As software systems constantly evolve and updates are made, developers need a comprehensive un-
derstanding of the system to minimize the occurrence of architectural mistakes. By integrating architectural
documentation creation into the software development process, developers can ensure that they have the

necessary knowledge and insights to make informed changes and mitigate risks.

2.3 Software Architecture Adaptability

Designing adaptable and maintainable software architectures is critical for the long-term success of software
systems [12]. This is particularly significant as architectural changes, when not handled appropriately, can
lead to significant costs. These costs can stem from the extensive resources required to refactor large portions
of the code, the risk of introducing new bugs or inconsistencies, and potential impacts on other interconnected
systems.

A significant contributor to the need for refactoring is the accrual of technical debt. A study by Alves et
al. identifies technical debt to often be a consequence of shortcomings in code design, architectural design
and documentation [13].

A key aspect of adaptable software architecture is designing systems that are loosely coupled and highly
cohesive. In the context of software architecture, a loosely coupled system is one where each of its components
is independent and has little knowledge of the others. On the other hand, high cohesion refers to how closely

the responsibilities of a single module or component are related to each other [14]. Designing systems

jrus - npan - Thesis 2023 Page 7 of

IT University of Copenhagen Background

with these characteristics facilitates change and improves quality attributes, such as maintainability and
testability [15].

2.4 Software Architecture Documentation in Complex Systems

Complex software systems present challenges for software architecture documentation. This section will

explore the specific challenges in these systems and their impact on the documentation process.

2.4.1 The Complexity of Software Systems

Software systems are often very complex, with many parts working together and depending on each other.
This makes documenting the architecture of these systems difficult because it requires capturing a lot of
information about different layers and components. Additionally, even when the documentation is done

correctly, the large static view can be hard to understand, making it difficult to learn about the system. |2]

2.4.2 Keeping Documentation Up-to-Date

Maintaining current and accurate architecture documentation for complex systems is a significant challenge.
Whenever a component of the system changes, it can lead to effects that ripple through the entire system,
which necessitates updates to several pieces of documentation. [4] Moreover, the process of updating doc-
umentation can often be time-consuming and labour-intensive, making it hard to keep pace with ongoing
changes in the system. This raises the importance of having mechanisms that ensure the regular updating

of architectural diagrams to mirror the evolving state of the system.

2.4.3 Documenting Interactions and Dependencies

Documenting interactions and dependencies between components in complex systems is critical to under-
standing the system’s overall architecture. [16] However, this can be challenging, as interactions and depen-
dencies may be difficult to capture clearly and concisely. It may be hard to read if a view gets populated

with too many arrows and boxes [16].

2.5 Agile Practices and Architectural Documentation

Agile development methodologies have gained significant traction in software development due to their
adaptability and responsiveness to change. [17] While these methodologies prioritize working software over
comprehensive documentation, it’s important to understand how architectural documentation fits into these

methodologies.

2.5.1 The Agile Perspective on Documentation

Agile methodologies encourage producing working software and responding to changes over generating com-
prehensive documentation. [18] However, Sommerville emphasizes the importance of maintaining architec-
tural documentation, even in small-scale systems and agile teams [19]. Despite the agility and adaptability
of the agile development methodology, there can be a tendency to overlook or let the architectural documen-

tation become outdated. The value of this documentation diminishes over time unless it is regularly updated

jrus - npan - Thesis 2023 Page 8 of

IT University of Copenhagen Background

to reflect the evolving system. Documentation that fails to stay in sync with the changes in the system risks

losing its relevance [9).

2.5.2 Balancing Agility and Documentation

Balancing agile development with effective architectural documentation can be challenging. In an envi-
ronment where changes are continuous, keeping documentation up-to-date can be cumbersome. However,
outdated or unclear documentation can create misunderstandings and difficulties in maintaining and evolving

the system’s architecture, especially as teams change over time.

jrus - npan - Thesis 2023 Page 9 of

IT University of Copenhagen Related work

3 Related work

In designing Architectural Lens, our objective was to draw upon established knowledge and best practices
in the field of software architecture documentation and visualization. To accomplish this, we conducted an
extensive search for relevant literature, examining the findings to uncover insights, recommendations, and
potential challenges that could inform our approach. In this section, we discuss the academic research and

existing tools we reviewed and elaborate on our criteria for selecting and evaluating the tools we encountered.

3.1 Existing Tools

In the field of software architecture documentation, a variety of approaches and tools have been developed
to assist in generating and maintaining architectural diagrams. These tools utilize different techniques and
methodologies, ranging from manual drawing approaches to automated solutions. In this section, we explore
different categories of tools that have been employed to create architectural diagrams, including manual
drawing approaches, diagrams as code, and automated tools. By exploring these different approaches, we
can gain insights into the strengths and limitations of each method and provide a comprehensive overview

of the existing landscape of software architecture documentation tools.

3.2 Manual drawing approach

A manual approach to architectural documentation involves creating it without relying on specific tools
or automation. This method allows developers to express their architectural vision in as much detail as
desired, enabling a high degree of customization and flexibility. Developers have the freedom to choose the
level of granularity and the specific elements they want to include in the documentation. However, there are
drawbacks to this approach, manual documentation is prone to becoming outdated as the system evolves over
time, requiring significant effort to keep it synchronized with the actual codebase. One tool that supports
manual documentation creation is draw.io, which provides a versatile diagramming platform for creating

detailed architectural diagrams and visual representations [20].

3.3 Diagrams as code

This approach involves using textual languages, such as programming languages or text-based DSLs, to create
diagrams. This approach offers benefits like easier version control, scripting possibilities, and integration into
the development pipeline, enabling automation of documentation processes [21]. Various tools, including
Structurizr DSL [22], Diagrams (23|, PlantUML [24] Mermaid [25] and Graphviz |26], provide the flexibility
for developers to create detailed and precise views of the architecture, including only the aspects they deem
important. However, as discussed earlier, one challenge with these tools is the difficulty of keeping the

documentation up to date.

3.4 Automated Tools

On the other hand, automated tools have taken various approaches to address the challenge of keeping the
system in sync with its documentation. These tools offer features such as automatic documentation gener-
ation, reminders for documentation updates, and mechanisms to ensure that the documentation accurately

reflects the current state of the system.

jrus - npan - Thesis 2023 Page 10 of

IT University of Copenhagen Related work

3.4.1 Swimm

Swimm aims to bridge the gap between documentation and source code by tightly coupling documentation
with the codebase itself. [27] It provides an integrated solution that automatically detects changes in the
codebase and prompts users to update the corresponding documentation sections, assisting the developer

keep the documentation up to date.

3.4.2 Pyreverse

Pyreverse, a tool that is part of pylint [28], offers the advantage of automatically generating architectural
diagrams by analyzing the source code. This automation simplifies the process of aligning the documenta-
tion with the actual source code. Additionally, Pyreverse provides functionality through its CLI to ignore
certain packages, allowing developers to filter certain elements from a system view. However, these automat-
ically generated diagrams tend to be large and complex as they represent the entire system, making them

challenging to comprehend. Tools similar to Pyreverse include Doxygen [29] and Umbrello [30].

3.4.3 Archjava

Archjava takes a different approach. Rather than creating documentation based on the source code, they
facilitate the creation of source code based on the documentation. This approach ensures that the docu-
mentation remains up to date because the code is generated directly from the architectural specifications.
Furthermore, tools like archjava prioritize maintaining the architectural design specified by the original de-
sign, which is not guaranteed by the other solutions. This integration between the documentation and the
code ensures not only accuracy but also adherence to the intended architectural design [31]. Another tool

that is also able to convert documentation to source code is Umbrello [30].

3.5 Diagrams as Code and Automated Tools

Both ”Diagrams as Code” and ” Automated Tools” have their merits. Diagrams as code allow developers to
define diagrams using familiar text-oriented tooling, offering control and automation possibilities. However,
it requires developers to define the entire system in code, which can be cumbersome and time-consuming to
maintain. On the other hand, automated tools offer various approaches to keep the documentation in sync
with the codebase. However, it is worth noting that automated tools like Pyreverse may produce complex
and extensive diagrams, which can pose challenges regarding comprehension, complexity and readability.
Potentially, integrating the strengths of both approaches could steer towards a more viable solution.
By leveraging diagrams as code, which allows for flexible and customizable representations, we can create
scoped and precise views. By incorporating automation similar to that of automated tools, we can enhance
the efficiency and effectiveness of generating and maintaining comprehensible architectural diagrams. This
hybrid approach combines the benefits of both methods, empowering developers to define tailored views
while automating the generation process. Merging the principles of diagrams as code and automated
tools lays the foundation for Architectural Lens, a tool which is designed to implement an approach for

producing comprehensible architectural diagrams using a combination of the principles.

jrus - npan - Thesis 2023 Page 11 of

IT University of Copenhagen Method

4 Method

To address the research question, ”How can the utilization of an automated diagram-generation tool help
the creation of software architectural documentation, such that the diagrams are comprehensible and remain
up to date, and what are the potential other benefits of using such a tool?” we applied the following

methodological approach.

4.1 Literature Review, Search Strategy and Criteria

This subsection outlines the methodology used in this paper to conduct a literature review and identify
relevant background works and related tools. It provides an overview of the search strategies employed and

highlights the process undertaken to gather relevant information in the field.

4.1.1 Background

To identify relevant literature for the background works of this study, we employed a search strategy that uti-
lized Google Scholar and focused on keywords such as ” Challenges of software architectural documentation”,
”Current issues with software architectural documentation”, ” Software Life Cycle and documentation”, ” Ag-
ile software documentation” and ”The affect of architectural documentation on software quality”. We began
by screening the search results, evaluating their relevance to our research objectives, and prioritizing papers
with significant academic citations. We then delved into the references of the selected papers to uncover
additional material that may be pertinent to our study. We aimed to conduct a comprehensive search while

remaining mindful of our project’s time and resource constraints.

4.1.2 Tools

To explore related tools in the field, we conducted searches on Google using relevant keywords such as ”auto-
mated architecture documentation tools”, ”diagram as code tools”, "automated architecture documentation
tools in python”, and ”architectural documentation tools”. The search results included websites like Stack
Overflow, where developers shared their comments and recommendations on tools they found useful which
lead to recommended tool being further explored. We also found dedicated websites directly showcasing
various tools for architectural documentation. We carefully examined the feature sets of these tools and,
whenever possible, even tested them ourselves to gain a better understanding of their contributions to archi-
tectural documentation creation. After identifying a tool, we conducted additional research to investigate
if there were any relevant academic studies or publications specifically addressing that tool using Google
Scholar. If such studies were found, we leveraged them to gather further insights into the capabilities and

potential benefits of the tool.

4.2 Tool Development and Iterative Feedback

We developed a software tool designed for Python projects, although the requirements it adheres to could be
implemented in any programming language. This emphasizes the tool’s inherent flexibility and adaptability
across different programming contexts. The tool is designed with customization in mind, allowing developers
to adjust diagrams according to their specifications, thereby facilitating the creation of detailed sub-views

that provide a more granular perspective on the domain model.

jrus - npan - Thesis 2023 Page 12 of

IT University of Copenhagen Method

The validation and reliability of our software tool were ensured through the development of a tool. We
solicited iterative feedback from our supervisor, who utilized the system on a Python project. This feedback
provided essential insights which were then carefully analyzed and discussed within our team. Based on
these discussions, we implemented necessary changes to enhance the system, addressing bug fixes, usability
improvements, and the comprehensibility of the generated documentation. Upon reaching a stage where we

had a minimum viable product, we initiated the recruitment of developers for our workshop and study.

4.3 Evaluation of Architectural Lens

To effectively assess the potential of Architectural Lens in continuous software development, we have defined
a process that outlines how the tool should be used within the context of this study.

Drawing inspiration from the iterative software development approach, which involves cyclic repetition
and refinement of development activities, this process guides participants to write code, generate diagrams
based on their code, review and refine the diagrams as necessary. This iterative process, referred to as
”the process” throughout the questionnaire and subsequent discussions, ensures that each participant has
a consistent experience when working with Architectural Lens. By establishing this approach, we aim to
maintain uniformity and enable meaningful comparisons across participants in evaluating the impact of

Architectural Lens.

4.4 Workshop

We conducted workshops with developers experienced in Python to collect diverse feedback on Architectural
Lens. As the tool presented in this paper was developed in Python, we recruited workshop participants
based on their programming language experience, specifically with daily Python development. Additionally,
we valued Involvement in various projects, and adherence to agile practices such as continuous use of feature
branches and pull requests. This selection criterion was important to ensure that they could effectively
incorporate the intended use of Architectural Lens into their existing workflows and provide valuable insights
and feedback.

The workshops were structured as follows:

1. Introduction: The workshop began with a discussion of the purpose and objectives of Architectural
Lens and highlighting current issues in architectural documentation. We introduced our solution,

aiming to create comprehensible automatic documentation that addresses these challenges.

2. Presentation: We demonstrated the Architectural Lens tool and the intended process of iteratively
applying Architectural Lens to generate customized views as part of the continuous documentation

process on a demo project.

3. Case Study: Zeeguu: We chose Zeeguu-API as a case study for applying Architectural Lens. Zeeguu-
API is an open-source API designed to track and model a learner’s progress in a foreign language, with
the goal of recommending paths to accelerate vocabulary acquisition. The application of Architectural
Lens to this project illustrates the entire workflow, demonstrating how it can be integrated into the

development process to create comprehensible architectural documentation.

4. Hands-on Activity: Participants were guided through installing Architectural Lens and applying it
to their projects, with assistance provided as needed.

jrus - npan - Thesis 2023 Page 13 of

IT University of Copenhagen Method

5. One-week Testing Period: Participants were given one week to use Architectural Lens in their
projects, during which we maintained regular communication to offer support and address any questions

or issues.

6. Reflection and Feedback: After the testing period, participants completed a questionnaire about
their experiences with generating documentation iteratively using Architectural Lens. Their detailed
feedback provided insights on usability, effectiveness, and areas for improvement or future research

directions.

This structured approach to the workshops allowed us to gather comprehensive and valuable feedback,
which was subsequently analyzed using a thematic analysis approach to evaluate the effectiveness of Archi-

tectural Lens.

4.5 Analysis

Upon completing the workshop, we used the thematic analysis method to identify common themes and
patterns in the data, which informed our conclusions regarding Architectural Lens. Additionally, we identified
the potential benefits and drawbacks of this combined approach.

Thematic analysis is a qualitative research method used to identify patterns or themes within unstruc-
tured data, such as questionnaire responses. It involves identifying, analyzing, and interpreting patterns or
themes in the data that emerge from the participants’ responses. [32]

To conduct thematic analysis, we read through the responses multiple times to gain a deep understanding
of the content. We then proceeded by labelling sections of the responses with descriptive or interpretive labels
that captured the meaning of the text. The labelled questionnaires can be found in the Appendix section.

Afterwards, we reviewed the labels to identify recurring patterns, themes, or categories that emerge across
the data. We compared these labels, which allowed us to see how different themes relate to one another and
the overarching research question. Finally, we interpreted the themes and their relationships to each other

to draw conclusions and implications for the research.

jrus - npan - Thesis 2023 Page 14 of

IT University of Copenhagen The automated tool

5 The automated tool

5.1 Architectural Lens

Architectural Lens is designed to facilitate the process of generating and maintaining architectural docu-
mentation for complex software systems. It aims to provide developers with comprehensible visual repre-
sentations of a system’s architecture, support the identification of potential architectural issues, and track

changes between different branches of a project. The tool’s main objectives include the following:

1. Automating the generation of architectural documentation and minimizing the risk of outdated or

incomprehensible documentation.

2. Facilitating system understanding by providing focused, comprehensible, and developer-defined views

of the system’s architecture, addressing the challenge of large and complex static views.

3. Assisting in the identification of architectural issues, such as violations of design patterns, thus enabling

developers to become aware of and rectify these issues.

Additionally, the tool aims to assist in understanding a system’s architecture by automatically generating
developer-customized visual representations of the relationships between modules and dependencies based
on the developer’s specifications for what to include or exclude. The tool achieves this by parsing the
source code, creating dependency graphs, and generating two types of customized architectural diagrams in
PlantUML, Figure [1| represents the first type: Render View.

Source Code }—){ AST Analysis }—){ Dependency Graph }—){ PlantUML Conversion }—){ Final Diagrams

Figure 1: Flow of Render View.

The two types of diagrams able to be created are the following:

1. Render views: These PlantUML diagrams display the system’s architecture using boxes and arrows to

represent modules and their relationships.

2. Difference views: Based on the Render views, these PlantUML diagrams showcase architectural changes
between the working branch and a specified branch. Added dependencies or modules are marked in

green, and removed ones are marked in red, making it easy to visualize changes in the architecture.

PlantUML is an open-source tool that allows developers to create diagrams using a simple and intu-
itive textual notation. It supports various types of diagrams, including class diagrams, module diagrams,
sequence diagrams, and activity diagrams [24]. With PlantUML, developers can describe the structure
and relationships of software systems in a textual format, which is then automatically rendered into visual

diagrams.

5.2 Tool Architecture & How the Tool Works

This section provides a detailed explanation of the tool’s inner workings, focusing on the process of analyzing
the code, generating visualizations, and creating the difference views. The core of the tool lies in the three

main algorithms: one that analyzes each source code file in the project using an Abstract Syntax Tree

jrus - npan - Thesis 2023 Page 15 of

IT University of Copenhagen The automated tool

(AST) to construct a graph of the system, a second that generates a view from the graph by converting it
into PlantUML syntax, and the third that builds on top of the second to create a difference view. These
algorithms are the pillars and the foundation of the tool’s functionality.

5.2.1 Parsing the Source Code with an Abstract Syntax Tree (AST)

The first algorithm analyzes each source code file in the project using an Abstract Syntax Tree (AST). The
AST represents the syntactic structure of the code, allowing the algorithm to identify and extract relevant
information such as classes, modules, and their dependencies. This information is then used to construct a

graph representing these elements’ relationships.

5.2.2 Generating Render View: Converting the Graph into PlantUML and Filtering Modules

The second algorithm takes the dependency graph generated by the first algorithm and converts it into
PlantUML syntax. This conversion process translates the nodes and edges of the graph into corresponding
PlantUML syntax, such as packages and dependency arrows, thereby creating a render view of the project’s
architecture. The algorithm considers the developer’s specifications for what should be included in the view
during this process. These specifications are defined in a JSON configuration file, which the developer can

use to customize the architectural views.

5.2.3 Creating Difference Views: Extending the Render View

The third algorithm is responsible for generating difference views. This process involves utilizing the first
algorithm to create an additional dependency graph based on the specified Git repository and branch from
the JSON configuration file. This new dependency graph will be compared to the one created for the render
view, to find and highlight the differences.

The algorithm then compares the two dependency graphs: the one generated from the Git repository’s
specified branch, and the other generated from the developer’s local working branch. It identifies the differ-
ences between the two graphs, highlighting added dependencies and modules in green and removed depen-
dencies and modules in red. The third algorithm generates a new PlantUML representation that incorporates

these differences, extending the render view to create a difference view. The process is presented in Figure

2

w’—) AST Analysis ——> Dependency Graph
T

| Source Code from Git Branch ———> AST Analysis ——> Dependency Graph

Comparing Graphs —— Difference Graph ——> Final Diagrams

Figure 2: Flow of Difference view.

5.2.4 Rendering Diagrams and Difference Views Using a PlantUML Server

After converting the dependency graph, render view, and difference views into PlantUML syntax using the
three algorithms, the tool uploads the generated PlantUML code to our self-hosted PlantUML server. The
server then processes the PlantUML code and returns the final diagrams and difference views in the desired
output format, such as PNG. These visualizations can be saved to a specified location and used better to

understand the project’s architecture and changes between branches.

jrus - npan - Thesis 2023 Page 16 of

IT University of Copenhagen The automated tool

The three algorithms at the heart of the tool provide an efficient and automated way to generate architec-

tural visualizations that facilitate system understanding and help identify potential architectural mistakes.

5.3 Architectural-Lens: Implementation details & Developers perspective

The name Architectural-Lens signifies the tool’s ability to provide focused, customizable views of the software
architecture, much like a lens can offer a tailored perspective. Python was selected for several reasons: the
developers’ familiarity with the language and the availability of Python projects for testing, including a
project supervised by our supervisor. This decision enabled a smooth testing process and facilitated the
development of a tool that works in conjunction with the process.

The Python implementation supports Python 3.9, 3.10, and 3.11. In developing the tool, we leveraged
the Astroid library for parsing the source code with an Abstract Syntax Tree (AST). We also developed
a custom Graph class for representing dependency graphs and implemented the algorithms for generating
render views and difference views in pure Python.

The README and source code for our project can be found here: |https://github.com/Perlten/Architectural-

Lens.

5.3.1 Language Agnostic

To ensure language agnosticism, Architectural Lens does not rely on any Python-specific features that could
limit its compatibility. This design choice allows for the implementation of Architectural Lens in various
programming languages, making it language agnostic. Although Architectural Lens is primarily described in
the context of its Python implementation in section it is important to note that the tool is not limited
to Python alone.

5.3.2 Installation

The Python implementation of our tool, Architectural-Lens, has been packaged to enhance accessibility.
Architectural-Lens can be found on the Python Package Index (PyPI) at https://pypi.org/project/Architectural-

Lens/, available for installation via the pip package manager. Execute the following command to install:

pip install Architectural-Lens

5.3.3 Configuration and Usage

The tool utilizes a JSON configuration file to define various user inputs, including the project name, root
folder, GitHub repository, branch, save location, and views. To generate the JSON file, users can run the
command archlens init, which creates a default configuration file named archlens. json in the project’s
root directory. This file serves as a blueprint for customizing the views of the system.

To provide a comprehensive understanding of the JSON file’s structure and elements, we will now explain
the contents of the entire file. However, in subsequent showings involving the JSON file, we will focus only

on the most important aspects to avoid redundancy and repetition.

jrus - npan - Thesis 2023 Page 17 of

https://github.com/Perlten/Architectural-Lens
https://github.com/Perlten/Architectural-Lens
https://pypi.org/project/Architectural-Lens/
https://pypi.org/project/Architectural-Lens/

IT University of Copenhagen The automated tool

"schema":

"https://raw.githubusercontent.com/Perlten/Architectural-Lens/master/config.schema. json",
"name": "project_name",
"rootFolder": "rootfolder_of_project",
"github": {

"url": "link_to_github_repo",

"branch": "branch_to_compare_with"
},
"saveLocation": "./diagrams/",
"views": {

"completeView": {

"packages": [],

"ignorePackages": []

Line 2: Specifies the schema for the JSON configuration file.
Line 3: Defines the project’s name.
Line 4: Indicates the source folder containing the root package (typically a folder named src).

Lines 5-8: Provide details about the project’s GitHub repository, including the URL and the primary

branch’s name.
Line 9: Determines the location for storing generated diagrams.

Lines 10-16: Outline the views for the architectural diagrams. In this instance, a single view called

”completeView” displays the entire system.

Line 12: Lists the packages to include in the view. When left empty, it will display the whole system

view.

Line 13: Identifies packages to exclude from the diagram.

Upon creating the views, a developer is able to create them using the command line interface, the following

are all the available commands:

1.

2.

3.

archlens init: This primary command generates the initial JSON configuration file.
archlens render: Produces render views of the architecture based on the JSON configuration.

archlens render-diff: Creates difference views between two architectural diagrams, facilitating com-

parison between versions or commits.

archlens create-action: Establishes repository actions to automate the generation and display of

difference views in pull requests.

jrus -

npan - Thesis 2023 Page 18 of

IT University of Copenhagen The automated tool

This subsection has presented various user inputs that are provided to Architectural Lens through a
JSON configuration file. As mentioned in the previous subsection (Language Agnostic), Architectural
Lens is designed to be transferable to other programming languages. While the specific method of providing
these configurations may vary across different programming languages, the key focus when implementing

Architectural Lens in a new language is to maintain its core functionality.

jrus - npan - Thesis 2023 Page 19 of

IT University of Copenhagen Applying the Tool: Demo Project

6 Applying the Tool: Demo Project

In this section and the following, we will demonstrate the use of the Architectural Lens tool in two different
scenarios. First, we will apply it to a simple demo project, which serves as an illustrative case to thoroughly
explain and highlight the tool’s core functionalities in the most understandable manner. Once the func-
tionality has been comprehensively introduced and understood, we will proceed to showcase the tool on a

real-world open-source system in the following section.

6.1 Setting Up & Entire Domain View

In this example, we will generate a comprehensive domain view of the system using the base configuration
file, archlens.json. The JSON file is presented below:

1 o{

2 "schema":
"https://raw.githubusercontent.com/Perlten/Architectural-Lens/master/config.schema. json",

3 "name": "demo_project",

1 "rootFolder": "tp_src",

5 "github": {

6 "url": "https://github.com/JesperRusbjerg/test_project",

7 "branch": "main"

8 },

9 "saveLocation": "./diagrams/",

1o "views": {

1 "completeView": {

|2 "packages": [],

3 "ignorePackages": []

e Line 3: Defines the project’s name.

e Line 4: Path to the root folder of the project, tp_src.
e Lines 5-8: Github link to the project.

e Line 9: Saving diagrams in ”./diagrams”.

e Lines 10-16: Outline the views for the architectural diagrams. In this instance, a single view called

”completeView” displays the entire system.

By executing archlens render, Architectural Lens generates the entire view of the demo project based
on the provided archlens.json file, which contains the ”completeView” view in Figure

The diagram displays various packages and their dependencies, symbolized by arrows linking them.
These arrows represent the import relationships between packages. Besides the arrows, the dependency

count appears, displaying the number of imports between the connected packages.

jrus - npan - Thesis 2023 Page 20 of

IT University of Copenhagen Applying the Tool: Demo Project

demo_project-completeView

| api.sub_api.api_test ',
[J

tp_core ', | api.sub_api ',

| tp_core.sub_core | controller ', api.sub_api.api_logic

Figure 3: Demo project completeView.

6.2 Package Filtering, Depth View, Ignoring Packages

In complex software systems, the entire view is difficult to understand, [16] developers may prefer to create

more focused views. In this example, we will generate an ”apiView” that displays only the "api” module

and its sub-system. This includes the ”api” module and all the packages beneath it. To achieve this, we

update the archlens.json file accordingly:

o {

2

"schema":
"https://raw.githubusercontent.com/Perlten/Architectural-Lens/master/config.schema. json",
"name": "demo_project",
"rootFolder": "tp_src",
"github": {
"url": "https://github.com/JesperRusbjerg/test_project",
"branch": "main"
},
"saveLocation": "./diagrams/",
"views": {
"apiView": {
"packages": [
"api"
1,
"ignorePackages": [

"xtestx"

jrus - npan - Thesis 2023 Page 21 of

IT University of Copenhagen Applying the Tool: Demo Project

e Lines 10-15: Defines the ”apiView” which focuses only on the ”api” and its sub-modules.
e Line 12: Specifies the packages to be included in the "apiView” (in this case, just the "api” package).

e Line 13: Specifies the packages not to be included in the ”apiView” diagram (ignores all packages with

"test” in their name).
The resulting diagram is shown in Figure

demo_project-apiview

| apl.sub_api.api_test \

apl.sub_api
|

1

api.sub_api.api_logic
| |

Figure 4: Demo project api filtered view.

Architectural-Lens can simplify views by using a depth specification. By specifying a depth value along-
side the ”packagePath,” the diagram will only display the designated number of sub-package layers. Data
from filtered-out sub-packages are aggregated to the nearest parent in the view, allowing the diagram to
show only the requested components and their direct dependencies while still retaining relevant information
through aggregation. The ”packagePath” field specifies the desired package’s location and must be used
alongside the "depth” field in the same object. By setting the ”depth” field to 1, for example, the diagram
will display only one layer of sub-packages within the api package, providing a focused view of the architec-
ture. In the JSON configuration file shown below, we use the depth specification to create a focused view of

the "api” package with a depth of 1:

jrus - npan - Thesis 2023 Page 22 of

IT University of Copenhagen Applying the Tool: Demo Project

2 "schema":
"https://raw.githubusercontent.com/Perlten/Architectural-Lens/master/config.schema. json",

3 "name": "demo_project",

A "rootFolder": "tp_src",

5 "github": {

6 "url": "https://github.com/JesperRusbjerg/test_project",

7 "branch": "main"

8 },

9 "saveLocation": "./diagrams/",

o "views": {

1 "apiView": {

2 "packages": [

|5 {

14 "packagePath": "api",

15 "depth": 1

17],
s "ignorePackages": [

o "xtestx"

e Lines 10-22: Defines the "apiView” with depth specification.

e Lines 12-18: Specifies an array of packages to be included in the "apiView.” In this case, there is only

b2

one package, "api,” with an additional depth property.

e Lines 13-17: Specifies an object containing the ”packagePath” and ”depth” properties for the ”api”
package. The "depth” property is set to 1, meaning only one layer of sub-packages within the ”api”

package will be shown in the diagram.

The resulting view with a depth of 1 is shown in Figure

demo_project-apiViewDepth

api.sub_api

=

Figure 5: Demo project api view with depth 1.

jrus - npan - Thesis 2023 Page 23 of

IT University of Copenhagen Applying the Tool: Demo Project

Using the depth specification in the "apiView” (Lines 13-17), Architectural-Lens generates a diagram
with only the ”"api” package and its direct sub-packages (Figure [5)). The depth value of 1 ensures that
only one layer of sub-packages is displayed in the view, resulting in a more focused and simplified diagram.
To understand why api.sub_api now depends on api, we must look back to Figure [and observe that the
sub-module api.sub_api.api_test relies on api. However, due to the depth constraint enforced on the view,
the api.sub_api.api_test sub-module has been removed. As a consequence, its dependency on api has been
aggregated upwards to its nearest parent, which is api.sub_api. Thus, the updated dependency indicates
that api.sub_api now depends on api. This simplification of the view does not result in any dependencies

being omitted; rather, it consolidates the dependencies through aggregation in a higher-level module.

6.3 Difference View

To create a difference view for the demo project, there is no need to modify the JSON configuration file.
Instead, you run the archlens render-diff command rather than the archlens render command.

Suppose you have made changes to the demo project’s codebase within the scope of a view and want to
visualize those changes. Executing the archlens render-diff command, in conjunction with specifying a
GitHub repository and branch within the config file for comparison, will generate the previously specified
views. Any added package or dependency will be highlighted in green, and any deleted package or dependency
will be shown in red. If the dependency count between two packages changes, the number on the arrows
will adjust accordingly. An arrow will turn red only if the dependency count decreases to zero, while a new
green arrow will appear if the count rises from zero to one or above.

Now, consider an example where you have added a new package called controller_new, which tp_core
depends on, and you have removed the old controller package, resulting in the deletion of the package and
all its dependencies.

Showcasing the difference by comparing the render view in Figure [7] and the render diff view in Figure

[l where the latter compares the changes to the master branch of the demo project.

jrus - npan - Thesis 2023 Page 24 of

IT University of Copenhagen Applying the Tool: Demo Project

demo_project-completeview

api

tp_core

| tp_core.sub_core | | apisub_apiapi test | api.sub_api.api_logic

| |] |

Figure 6: Difference view of the modified demo project.

demo_project-completeView

| ‘api.sub_apiapi_test ',

tp_core

| l I |

tp_core.sub_core | controller_new ', | api.sub_apiapi_logic

|] | J

Figure 7: Non-difference view of the modified demo project.

jrus - npan - Thesis 2023 Page 25 of

IT University of Copenhagen Applying the Tool: Demo Project

6.4 GitHub Action for the Demo Project

When creating architectural documentation based on changes made to the demo project, a developer may
want to create a pull request showcasing those changes. Presenting the entire system view to a reviewer could
make it challenging to spot the differences and identify any mistakes. As specified in the configuration and
usage subsection the archlens create-action command is designed to generate a GitHub action for
the repository where the code is stored. This action showcases difference views based on the archlens.json
file, making it easy to spot the differences for the reviewer.

In our implementation, we use GitHub and GitHub actions. When a developer runs the archlens
create-action command, files are added to the project’s .github folder (the folder is created if it doesn’t

exist). Inside this folder, a GitHub action is placed, which follows these steps:
1. Renders each view as a ”Difference view.”
2. Uploads the images to our PlantUML server.

3. Attaches the returned images as comments in the pull request, making it easy for the reviewer to

understand the documentation and what has changed.

Figure [§| displays the view of the action having run on Github, which is based on the previous example

in Figure [6]

Controller

1% Open

) Conversation 1

(o

JesperRusbjerg

O github-actions

demo_project-completeView

3

api.sub_api

\ [}

tp_core.sub_core apl.sub_api.api_test api.sub_api.api_logic

Figure 8: GitHub Action with Difference View.

jrus - npan - Thesis 2023 Page 26 of

IT University of Copenhagen Applying the Tool: Demo Project

This allows the reviewer to see the difference view for each pull request created, as long as the archlens.json

file and the create-action configuration are present in the project.

jrus - npan - Thesis 2023 Page 27 of

IT University of Copenhagen Case Study: Applying the tool on Zeeguu

7 Case Study: Applying the tool on Zeeguu

After showcasing the Architectural-Lens tool using a basic demo project to illustrate its capabilities, we now
focus on a real-world project. This will highlight the tool’s capabilities when applied in a more complex
environment.

In the following subsections, we will examine the Zeeguu API, a Python project with 36 modules. The
Zeeguu API is an open source API that enables tracking and modelling the progress of a learner in a foreign
language, aiming to recommend paths for accelerating vocabulary acquisition. The Zeeguu API repository
is available on GitHub: https://github.com /zeeguu/api.

The base configuration file for archlens.json is shown below, with the key elements explained:

2 "schema":
"https://raw.githubusercontent.com/Perlten/Architectural-Lens/master/config.schema. json",

3 "name": "zeeguu",

4 "rootFolder": "zeeguu",

5 "github": {

6 "url": "https://github.com/zeeguu/api",

7 "branch": "master"

8 1,

9 "saveLocation": "./diagrams/",

o "views": {

1 "completeView": {

| "packages": [],

3 "ignorePackages": []

The primary differences in the configuration file compared to the demo project are the project’s name,
root folder, and GitHub repository URL (Lines 3-8). The other parts of the configuration file remain the
same.

In Figure [0} we present a miniature version of the entire view of the Zeeguu API project. Due to its
complexity, the full-sized view cannot be accommodated within this report. However, a link is provided for
those interested in exploring the complete view in more detail.

As illustrated, even with only 36 modules, the Zeeguu API’'s domain model is difficult to comprehend
and will become increasingly challenging as the system grows. In the next subsections, we will create more

digestible views to help explain the system.

7.1 Scoping the domain: Core and API view of Zeeguu

The Zeeguu API is built upon two main sections: the API and core. The API would typically depend on the
core, and the core provides the essential business logic for the application. To gain a deeper understanding

of the system’s architecture, we can start by breaking it into two separate views: core and API.

jrus - npan - Thesis 2023 Page 28 of

https://github.com/zeeguu/api

IT University of Copenhagen Case Study: Applying the tool on Zeeguu

Figure 9: Zeeguu entire-view. Full size image is available here:
https://github.com/JesperRusbjerg/code/blob/master/zeeguu-completeView.png

We present the two views: Core view (Figure and API view (Figure [11).

The core view config:

2 "schema":
"https://raw.githubusercontent.com/Perlten/Architectural-Lens/master/config.schema. json",

3 "name": "zeeguu",

A "rootFolder": "zeeguu",

5 "github": {

6 "url": "https://github.com/zeeguu/api",

7 "branch": "master"

8 },

9 "saveLocation": "./diagrams/",

o "views": {

1 "coreView": {

2 "packages": [

I3 {

114 "depth": 1,

15 "packagePath": "core"

|7 1,
s "ignorePackages": [

1o "xtestx"

)

In this JSON example, we create a focused subview called ”coreView” instead of generating a view
encompassing the entire system. The configuration file assumes the existence of a package named zeeguu.core
in the project, as indicated by the packagePath field in the JSON. If this path does not exist, the render will

fail. The ”packagePath” field specifies the path to the package of interest and must be accompanied by a

jrus - npan - Thesis 2023 Page 29 of

https://github.com/JesperRusbjerg/code/blob/master/zeeguu-completeView.png

IT University of Copenhagen Case Study: Applying the tool on Zeeguu

”depth” field in the same object. The ”"depth” field is set to 1, meaning that only one layer of sub-packages
within the core package will be shown in the diagram. It is the "depth” field that controls the depth of the
sub-packages displayed in the resulting view.

The ”ignorePackages” field filters out any package with the word ”test” in its name, further refining the
view and making it easier to focus on the essential components of the project’s architecture.

The coreView configuration generates the architectural diagram seen in Figure

zeeguu-coreView

core.user_activity_hooks core.account_management |

1
core user_statistics . R | core content_recommender core emailer
)

» %
\ |

| <
T 1 ‘

core.word_scheduiing |

it

| —'—-\
core bookmark_quality | core.configuration '\ 5 [core.content retriever |
] I

il 6

core.elastic |
]

core definition_of learned

Figure 10: Zeeguu CoreView.

It is important to note that you can add multiple ”allowed package paths/objects” and multiple ig-
norePackages if you wish to create even more specified views.
In addition to core, let’s create a view of the 7 API” side of the Zeeguu API. We’ve added "api” as an

allowed path, meaning that we only allow packages that begin with the name zeeguu.api.

jrus - npan - Thesis 2023 Page 30 of

IT University of Copenhagen Case Study: Applying the tool on Zeeguu

the API View config:

2 "schema":
"https://raw.githubusercontent.com/Perlten/Architectural-Lens/master/config.schema. json",
3 "name": "zeeguu",
4 "rootFolder": "zeeguu",
"github": {
6 "url": "https://github.com/zeeguu/api",
7 "branch": "master"
8 },
9 "saveLocation": "./diagrams/",
o "views": {
1 "apiView": {
|2 "packages": [
13 "api"
14 1,
|5 "ignorePackages": [

16 "xtestx"

In this scenario, we do not specify a depth, meaning that we will see the entire subsystem of the ”api”
package (as shown on line 13). Again, we are not interested in seeing any package with the word "test” in

its name.

The ” APT” side of the Zeeguu API can be seen in Figure

Zeeguu-apiView

apLapiE | api.apiteacher_dashboard 1
|))

1
£;;§L
api
'|

Figure 11: Zeeguu API View.

api.api.utils

Now, by simply dividing the domain into the two main sections of the application, it is arguably easier
to gain an overview of the system. However, we can scope it even further if necessary to create more focused
and comprehensible views of the architecture, providing additional clarity and understanding of the system’s

components and dependencies.

jrus - npan - Thesis 2023 Page 31 of

IT University of Copenhagen Case Study: Applying the tool on Zeeguu

7.2 Focusing on Specific Domain Components

Suppose you are a developer working on two closely connected modules: core.model.word knowledge and
core.language. These modules are situated 4-5 layers deep within the system, making them difficult to
spot in an automated view of the entire system. To better understand the relationships and dependencies
within this specific domain, you can create a focused architectural view for these modules by following the
steps we demonstrated in the demo project section. Start by creating a JSON configuration file with the

necessary information, as shown below:

o o{

2 "schema":
"https://raw.githubusercontent.com/Perlten/Architectural-Lens/master/config.schema. json",

3 "name": "zeeguu",

4 "rootFolder": "zeeguu",

"github": {

6 "url": "https://github.com/zeeguu/api",

7 "branch": "master"

8 },

9 "saveLocation": "./diagrams/",

o "views": {

1 "languageAndWordView": {

2 "packages": [

13 "core.language",

114 "core.model.word_knowledge"

|5 1,

|6 "ignorePackages": []

This configuration will generate a view of these two modules, their subsystems, and their relationship-
s/dependencies. As with the demo project, you can achieve this by running the archlens render function,
resulting in the image presented in Figure

Although this information is present in the view of the entire system, it would be challenging to locate

and comprehend the clutter and numerous arrows present in the complete view.

jrus - npan - Thesis 2023 Page 32 of

IT University of Copenhagen

Case Study: Applying the tool on Zeeguu

zeeguu-languageAndWordView

core language |,

2

7

| core.language strategies ',

| core.model.word_knowledge |,

Figure 12: Zeeguu Language and word knowledge view.

jrus - npan - Thesis 2023

Page 33 of

IT University of Copenhagen

Case Study: Applying the tool on Zeeguu

7.3 Identifying Architectural Errors

In complex software systems like Zeeguu, spotting architectural errors such as unwanted bi-directional de-

pendencies can be challenging due to the cluttered nature of the overall view. In Zeeguu’s case, there is an

unexpected bi-directional dependency between its two main components, namely, the core and the API. To

identify this issue, one can create a focused view of the two top levels of the system with a depth of 1. This

view will display the two modules with their entire sub-systems aggregated within their respective boxes,

revealing the bi-directional dependency between them, as illustrated in the following JSON example and
Figure [I3]

1 {

1}

"schema":

"https://raw.githubusercontent.com/Perlten/Architectural-Lens/master/config.schema. json",

"name": "zeeguu",
"rootFolder": "zeeguu",
"github": {
"url": "https://github.com/zeeguu/api",
"branch": "master"
1,
"saveLocation": "./diagrams/",
"views": {
"topLevel": {
"packages": [
{
"packagePath": "",
"depth": 1

])

"ignorePackages": []

Zeeguu-topLevel

Figure 13: Zeeguu top level view.

The aggregation of sub-systems plays an important role in summarizing dependencies and clearly demon-

jrus - npan - Thesis 2023

Page 34 of

IT University of Copenhagen Case Study: Applying the tool on Zeeguu

strating the relationships between modules at a higher level, making it easier to spot architectural issues.

When dealing with larger views of a system, Figure demonstrates the possibility of detecting the
bi-directional dependency between the api and core module, which would have been very hard to spot in
the entire system view of Zeeguu (Figure E[) Upon discovering such an issue, developers need to investigate
further to locate the precise source of the problem.

These examples showcase the versatility of Architectural Lens in detecting architectural mistakes. Users
can create a wide range of custom views to suit their specific needs, such as inspecting a three-layered
architecture by aggregating all modules except the top-level ones to examine the adherence to the layered

structure.

Summary

Throughout this section, we have demonstrated how the Architectural Lens tool can be utilized to gen-
erate various architectural views of a software system. By defining multiple views within a single JSON
configuration file, developers can create diagrams that cater to their specific needs, enhancing the under-
standing and communication of the system’s architecture. The integration with GitHub Actions allows for
automatically generating difference views during the code review process, making the assessment of archi-

tectural changes more efficient.

jrus - npan - Thesis 2023 Page 35 of

IT University of Copenhagen Workshop

8 Workshop

As delineated in the methods section, we conducted a workshop with Python-experienced developers to
evaluate the Architectural Lens tool and our proposed continuous process for generating customizable archi-
tectural diagrams. This workshop provided hands-on experience with the tool and process and facilitated

the collection of valuable insights for its effectiveness and potential improvements and future research.

8.1 Questionnaire

To gather feedback from participants regarding their experience with Architectural Lens and the workshop,
we have developed a questionnaire specifically designed to capture their opinions and insights on using
Architectural Lens. It is important to note that the wording of the questionnaire primarily focuses on the
process of working with the tool, as described in the Method section of the report. By following this process,
participants use Architectural Lens in a uniform manner, ensuring that their experiences with the tool are
aligned and enabling meaningful comparisons across participants.

The questionnaire includes a combination of open-ended and qualitative questions, allowing participants
to provide detailed and measurable feedback. The questions cover various aspects, including their perceptions

of the tool’s effectiveness, usability, and impact on their architectural documentation practices.

1. Background and Experience: Participants were asked to briefly introduce themselves and share
their background in software development (Q1), as well as describe the system they are currently

working on (Q2).

2. Integration and Workflow: Participants were asked about their vision for integrating Architectural
Lens into their day-to-day work (Q3) and how the process supported their workflow in maintaining

up-to-date architectural documentation (Q7).

3. Comprehension and Scoping Views: Questions focused on the impact of scoping views on the
overall comprehension of system architecture (Q4) and the improvement of comprehensibility in archi-

tectural documentation (Q8).

4. Continuous Process and Documentation: Participants were asked about the effects of incorporat-

ing diagram generation as part of a continuous process on their system’s architectural documentation

(Q5).

5. Showcasing Differences: The questionnaire addressed participants’ thoughts on showcasing differ-

ences between the "main” branch and their feature branch when creating a pull request using the tool

(Q6).

6. Improvements and Suggestions: Participants were encouraged to provide suggestions to improve
Architectural Lens. (Q9).

7. Future Work: The questionnaire asked about additional features or future research directions par-

ticipants would like to see explored in Architectural Lens (Q10).

The completed questionnaires were collected at the end of the one-week testing period. The feedback
collected from the questionnaire will help evaluate the effectiveness of the Architectural Lens tool and identify

areas for improvement or future research.

jrus - npan - Thesis 2023 Page 36 of

IT University of Copenhagen Workshop

Here are the questions included in the questionnaire:

10.

. Could you briefly introduce yourself and share your background in software development?

Please describe the system that you are currently working on
How do you envision integrating the proposed process into your day-to-day work?

Considering our proposed process, how do you think the ability to scope views might impact your

overall comprehension of your system architecture?

In your opinion, what effect could our proposed process of incorporating diagram generation as part

of a continuous process have on your system’s architectural documentation?

What are your thoughts on showcasing differences between the "main” branch and your feature branch

when creating a pull request using our proposed process?

How well did our proposed process support your workflow and assist you in maintaining up-to-date

architectural documentation?

How well did our proposed process support your workflow and assist you in improving the comprehen-

sibility of your architectural documentation?

Do you have any suggestions to improve the tool to make the diagrams even more comprehensible or

valuable?

What additional features or future research directions would you like to see explored in Architectural

Lens?

jrus

- npan - Thesis 2023 Page 37 of

IT University of Copenhagen Analysis

9 Analysis

Following the one-week trial period, we conducted a thematic analysis as outlined in the method sections

[45 to analyze the results. Below presents the findings from the analysis of the questionnaire.

9.1 Improved understanding and spot architectural errors

All five developers who participated in the questionnaire reported that it aided them in gaining a better
understanding of the system they were working on. However, this improved understanding was achieved for
different reasons. One developer attributed this to the ability to focus on critical parts of the system by
scoping the views, stating that ”“being able to easily divide your project into subsystems makes it easier to
explain.” Another developer found the colour coding in the difference view to be helpful in comprehending
the system, stating that “the color highlighting made it very easy to see what changes occurred in the system
before allowing it to be part of your code-repository.”

During the questionnaire, developers mentioned that the enhanced system comprehension aided in iden-
tifying design flaws. Certain developers believed that scoping views to lower levels were the reason, while
others attributed it to the integration of GitHub action. One developer stated, ”In addition, as the docu-
mentation was generated frequently, it assisted me in spotting architectural errors before committing them to
the codebase, which in the long run may help my system quality improve, as it is less complex and has fewer
architectural errors.”

One of the developers pointed out that for the tool to achieve its full potential, it is essential that all team
members embrace it. This developer noted that ” Generating customized views tailored to specific aspects
of the system, like showing only the components related to ”data storage” or ”user management”, has made
it easier to understand the architecture. ”But again, I think it’s important to note that for this process to
really take effect, it is important that the entire team at least adopts the idea, much like we have with unit

testing”.

9.2 Onboarding

Four out of the five developers who participated in the questionnaire mentioned onboarding as a potential
benefit of using the tool. However, this is not necessarily because of the tool itself but due to the general
benefits of having precise documentation. However, the automatic generation of the documentation of our
tool ensures that new developers always have access to the most up-to-date diagrams, and the scoped views
make it easier for them to comprehend the system, as discussed in the previous section.

As one developer pointed out, ”Additionally, when it comes to overall team efficiency and onboarding,
I think that visual learning is an incredibly powerful way to quickly understand and get an overview of a
new project. Having pre-generated and precise views of our system for onboarding of new employees could
help with reducing man hours used on onboarding both for the new employee and the senior developers.” This
highlights the potential for our tool to not only benefit current developers but also streamline the onboarding

process for new team members.

9.3 Architectural alignment

Three out of the five developers who participated in the questionnaire identified potential benefits in terms

of aligning the architectural design within the team. They saw this as a possibility through the continuous

jrus - npan - Thesis 2023 Page 38 of

IT University of Copenhagen Analysis

process of pull requests and architecture review in parallel with traditional code review. One developer
specifically mentioned that the tool could be used ”as a collaborative tool to make sure other team members
align with my design and that my changes don’t introduce undesired coupling.” This could potentially lead to
a more coherent and consistent system design across the team, reducing the risk of errors and inconsistencies

in the codebase.

9.4 Usability

One aspect that could quickly be overlooked was the resources that it takes to set up the tool to part of a
systems continuous integration. In this regard we have made tried to make this as simple as possible, so that
a developer only need to run two commands to set up a view and add the tool to github PR review. This
easy of use is also something some of the developers have remarked upon. One of the developers remarked
that ”Because it was so easy to integrate, I was up and running almost immediately and started generating
architectural views based on live changes.” another developer also mentioned that it was easy for him to add

the tool to his existing workflow.

9.5 Up-to-datenss & scoped views

This report aimed to solve two significant issues: outdated architectural diagrams and diagrams that became
too complex to be comprehensible for developers. Feedback from the developers who participated in our
study showed that these issues were indeed a concern. One developer mentioned that ”Incorporating the
diagram generation into a continuous process has helped ensure that our architectural documentation stays
up-to-date and accurately reflects the current state of the system.” Similarly, four out of five participants
provided similar responses regarding up-to-dateness. All five developers noted the benefits of using scoped
views to improve their understanding of the system. One participant explained that segmenting the diagram
into views helped them focus on the relevant parts of the system, rather than getting lost in an overwhelming,
all-encompassing diagram. The ability to create custom, scoped views was cited as a key factor in enhancing

comprehension.

9.6 Human error

In addition to keeping the documentation up to date and improving the team’s understanding of the system,
the tool can also help avoid human errors in the documentation. As one of the developers pointed out, ” With
it happening automatic, this ensures you have an up to date diagram, and developers don’t have to question
whether diagram is incorrect either from human errors or just not recently updated.”

Keeping diagrams updated manually can be a tedious and error-prone task, as developers may forget
to update them after making changes or make mistakes in the process. By automating the process of
generating diagrams, the tool can help ensure that the documentation is always up to date and accurate,

without requiring additional effort from the developers.

9.7 Improvements

The developers also came with lots of suggestions as to what could improve the tool.

1. Export the internal dependency graph as some ingestible format (json, txt) so it can be used for further

code analysis made by the user itself.

jrus - npan - Thesis 2023 Page 39 of

IT University of Copenhagen Analysis

2. Make the views interactive by making extensions to popular IDE and code editors such as vscode, and
allow users to navigate the systems architecture by clicking on the different modules, and automatically
save the discovered views to the JSON file.

3. Identifying common design mistakes and emphasizing them in the diagrams.

4. Currently, the tool can only analysis within a single system. However, as more and more systems rely
on patterns such as microservices, it would be beneficial to be able to analyse across codebases to show

dependencies between them.

5. Create another GitHub action that automatically adds the newest diagrams to the repo on every new

commit.

jrus - npan - Thesis 2023 Page 40 of

IT University of Copenhagen Discussion

10 Discussion

In this section, we compare the insights gathered from our workshop data analysis to the established lit-
erature in the related works and background sections. We aim to explore the implications of our findings.
We will examine how the tool addresses the challenges of creating and maintaining comprehensible architec-
tural documentation. Through these discussions, we aim to provide a comprehensive understanding of the

significance and implications of our research in the context of software architecture documentation.

10.1 Comprehensible and up-to-date diagrams

Participants in our study, as elaborated in analysis section [9.1] reported an improved understanding of the
systems they were working on, attributed to features such as scoped views and colour-coded difference views.
These features not only enabled developers to focus on the relevant parts of the system but also facilitated
swift identification of changes. As a result, developers were better equipped to identify and rectify design
flaws, potentially improving system quality and reducing complexity.

Reflecting on this, it becomes apparent that the power of Architectural Lens lies not just in its ability to
generate diagrams, but in its capacity to make those diagrams highly relevant and actionable to developers.
The tool’s provision for scoped and colour-coded difference views can potentially transform how developers
engage with system architectures, potentially leading to more thoughtful design decisions and ultimately,
more robust and maintainable systems.

Incorporating the insights from analysis section we acknowledge that keeping diagrams updated
manually can be a tedious and error-prone task, as developers may forget to update them after making
changes or make mistakes in the process. As highlighted by a developer in Section the automation
offered by Architectural Lens assures the continuous accuracy of the diagrams requires minimal effort from
developers. This automation eliminates doubts about potential human errors or outdatedness.

Reflecting on this, it becomes apparent how important automation is in maintaining reliable architectural
documentation. By eliminating the need for manual updates, we not only save developers’ time but also
greatly reduce the chances of inconsistency between the codebase and its corresponding diagrams. This could
lead to increased productivity and job satisfaction as developers are able to engage more deeply in problem-
solving and creative tasks. In addition, accurate and up-to-date diagrams can enhance the understanding of
the system architecture among team members, potentially improving collaboration and the overall quality
of the software.

However, while automation eliminates the need for manual updates, it’s important to note that the
quality of the generated diagrams is contingent upon the correct implementation and configuration of the
tool. Any issues in these areas could potentially lead to inaccurate diagrams, which could mislead developers
and negatively impact their work. Therefore, proper setup and maintenance of the tool are critical for

ensuring the accuracy of the diagrams and reaping the full benefits of automation.

10.2 Scoped views

Developers participating in the workshop, as discussed in analysis section found scoped views valuable
for understanding and explaining the system. By focusing on specific parts of the architecture, developers
could eliminate irrelevant details and concentrate on critical aspects, facilitating better comprehension and

more efficient design processes.

jrus - npan - Thesis 2023 Page 41 of

IT University of Copenhagen Discussion

Furthermore, analysis section highlighted potential benefits of scoped views in aligning architectural
design within teams. Through continuous pull requests and architecture review alongside code review, scoped
views can serve as a collaborative tool for ensuring design alignment and avoiding undesired coupling. This
can result in a more coherent and consistent system design, reducing errors and inconsistencies in the
codebase. By fostering better architectural alignment within the team, scoped views can contribute to
improved system quality and maintainability. Developers can identify and correct design flaws more easily,
leading to a more robust and adaptable system.

Lastly, scoped views align closely with the principles of agile and trunk-based development practices,
where collaboration is valued over extensive documentation, scoped views offer a solution by creating clear

and concise documentation for each part of the system being developed.

10.3 Software Life Cycle

The use of Architectural Lens has the potential to positively impact various stages of the software life cycle,
as discussed in the background section 2.2} Our analysis, detailed in sections [0.2] and [0.3] highlighted that
developers appreciate the precise and up-to-date diagrams generated by Architectural Lens. By providing
accurate views, the tool aids in several phases of the software development process.

During the planning and analysis phase, Architectural Lens, offers a mechanism for maintaining alignment
with the original system design. By facilitating the generation of accurate, focused architectural views, it
enables continuous comparison of the evolving system with the initial blueprint. Continual comparison with
the original design is beneficial as it helps to manage architectural drift, ensuring that design decisions made
early in the development process continue to be relevant and effective. This iterative validation ensures the
final product accurately reflects the envisioned architecture.

During the development phases, the tool’s capability to create scoped views can enhance productivity
by enabling developers to concentrate on specific aspects of the architecture. This approach enables a more
efficient design and coding process as developers gain a better understanding of the system. Furthermore,
automated diagram generation ensures the documentation remains current and accurate, minimizing the risk
of misunderstandings or errors that could stem from outdated or inaccurate diagrams.

The benefits of Architectural Lens extend into the maintenance phase as well. As the tool keeps the
diagrams in sync with the codebase, developers have access to up-to-date documentation that can aid in
understanding the system during maintenance, making it easier to identify and fix issues. [11]

In the post-development phase, Architectural Lens could also play a significant role. Precise and current

diagrams could aid in system analysis, evaluation, and potential system refactoring.

10.4 Onboarding

While onboarding wasn’t explicitly identified as a challenge in the background and related works sections,
developers participating in our study acknowledged the value of Architectural Lens in facilitating a smoother
onboarding experience, as detailed in the analysis section [9.2]

Our analysis revealed that developers found it easier to grasp and explain the system’s architecture when
utilizing our tool. A particularly salient point noted by a developer, highlighted in section was that the
availability of pre-generated, precise views of the system could significantly reduce the man-hours spent on
onboarding - a benefit for both the new employee and the senior developers tasked with their training.

Reflecting on these insights, the use of Architectural Lens could transform the onboarding process by

jrus - npan - Thesis 2023 Page 42 of

IT University of Copenhagen Discussion

providing a comprehensive, up-to-date, and easily comprehensible view of the system’s architecture. This
could fast-track the new developer’s understanding of the system, allowing them to contribute more quickly
and meaningfully to the project. However, it’s important to recognize that the tool’s effectiveness in this
regard is tied to its correct setup and maintenance.

The insights gathered from developers, coupled with the previously discussed implications, highlight
the potential of Architectural Lens to enhance the onboarding experience, overall team productivity, and

comprehension of the system.

10.5 Enhancing Quality Attributes: Impact of Architectural Lens

Developers mentioned in the analysis section [0.1] that the enhanced system comprehension aids in identifying
design flaws, leading to a more error-free and maintainable system architecture, which in the long run can
help improve both the quality and maintainability of the system.

Based on the insights gathered from the developers we interviewed, there is an indication that Archi-
tectural Lens contributes to improvement in the system’s quality attributes, specifically maintainability.
However, further studies and evaluations involving a more extensive and more diverse sample of develop-
ers would be valuable in providing stronger evidence and insights regarding the specific contributions of

Architectural Lens to system quality attributes.

10.6 Usability and ease of use

An important aspect of any tool is its usability and ease of use, which can influence the likelihood of its
adoption by development teams. The analysis section highlights that developers appreciate the ease of
setup and minimal learning curve associated with Architectural Lens.

By making it easy for developers to try and use our tool, we increase the chances of its adoption, which
may lead to better software documentation and improved system quality. These benefits are supported by
the developers’ experiences and opinions shared in the analysis[0.4] emphasizing the importance of usability
and ease of use in the successful implementation of Architectural Lens within the software development

process.

10.7 Understanding Comprehensible Diagrams

Initially, our understanding of ’comprehensibility’ in the context of software diagrams was quite basic: a
developer should be able to understand the information presented in the diagram. The initial design of
Architectural Lens focused on this notion, incorporating the concept of scoped views to improve the clarity
of the diagrams. As we further developed the tool, we recognized the need to distinguish between different
changes in the architecture visually. Hence, we introduced colour highlighting for branch differences, where
red indicated deletions, and green represented new additions, further enhancing the comprehensibility of the
diagrams.

In addition to these highlighted views, the suggestions and feedback from the developers during the work-
shop suggest that comprehensibility extends beyond our initial understanding. It is not merely about visual
clarity or the ability to grasp the presented information. Instead, comprehensibility includes the relevance
and usefulness of the information presented. Features such as detecting potentially harmful architectural
patterns, integrating the tool directly into the Integrated Development Environment (IDE), and creating an

interactive filtering or selection view for generating the configuration file for the diagrams were suggested by

jrus - npan - Thesis 2023 Page 43 of

IT University of Copenhagen Discussion

the developers. These suggestions indicate a more nuanced and complex understanding of comprehensibil-
ity, which encompasses not just clarity, but also relevance, usefulness, and ease of access within developers’
workflow.

Therefore, while Architectural Lens has made strides in enhancing the comprehensibility of software
architecture diagrams through scoped views and colour-coding, our understanding of what constitutes ’com-
prehensibility’ has evolved. The future work in this area should further explore and expand on this under-

standing of comprehensibility in the context of software architecture diagrams.

Summary

In this discussion, we have delved into how Architectural Lens tackle the challenges identified in the
background and related work sections. We have examined the advantages of producing up-to-date and
comprehensible diagrams, scoped views, and the tool’s ease of use, as well as their impact on onboarding and
the software life cycle. Additionally, we have explored improvements in the quality attribute maintainability,

and the significance of usability in the tool’s adoption.

jrus - npan - Thesis 2023 Page 44 of

IT University of Copenhagen Limitations & Reliability

11 Limitations & Reliability

In this section, we will examine the limitations and reliability of our study, taking into account the method-
ology employed, the sample size and diversity, and the tool’s applicability to other programming languages.
By addressing these concerns, we aim to provide a transparent and comprehensive evaluation of our research,
acknowledging the potential shortcomings and biases that may have influenced our findings. Furthermore,

this analysis will help to contextualize the results and inform future research efforts.

11.1 Sample Size and Diversity

In this research, we exclusively interviewed software developers. The insights of other stakeholders, such as
architects, testers, or product owners, might offer additional perspectives on the tool’s efficacy and potential
enhancements. Subsequent research could involve a more extensive set of stakeholders to obtain a more
comprehensive understanding of Architectural Lens impact on the software development process.

Our study encompassed a limited sample size of 5 developers, all originating from Northern Europe and
within the age range of 25-50. Although we conducted a thematic analysis and attained saturation, with
all responses demonstrating similarities and consistent themes, it is important to acknowledge that larger
or more diverse samples might produce different outcomes. To enhance the generalizability of the findings,
future research must prioritize including a significantly larger number of participants drawn from a wide

range of geographical locations, age groups, and professional backgrounds.

11.2 Methodological Limitations

Our research methodology was solidly grounded in an extensive review of background and related works,
which offered valuable insights into the problem at hand. However, in retrospect, there are aspects that

could have been approached differently for potentially richer outcomes:

e In the initial phase of the tool’s development, engaging more directly with developers could have
provided an additional layer of insight into potential solutions. Although our methodology didn’t
include this step, it could have facilitated a better understanding of their concerns and expectations

during the development of Architectural Lens.

e A limitation of our study is that we provided instructions on how to apply Architectural Lens using
an iterative process. While this approach allowed us to examine the tool’s effectiveness within a
controlled setting, it is important to acknowledge that the provided guidance may have influenced
participants’ usage patterns and potentially restricted their exploration of alternative approaches. By
offering specific instructions, we may have inadvertently limited the creative possibilities and diverse

ways in which developers could fully leverage the potential of Architectural Lens.

e While we conducted the workshops ourselves to ensure consistency, it is important to acknowledge that

this may have introduced some degree of bias in the presentation and explanation of the tool.

These considerations are important to acknowledge as they highlight potential areas where our methodol-
ogy could have been improved. The lessons learned from these limitations can guide the design and execution

of future research in this area.

jrus - npan - Thesis 2023 Page 45 of

IT University of Copenhagen Limitations & Reliability

11.3 Tool Limitations

While our objective was to address the problem generically, our tool focused on Python. As a result, this
report solely collects data from Python developers. Developers utilizing other programming languages may
offer different insights and opinions regarding the tool’s effectiveness. Due to time constraints, we were unable
to involve more programming languages in our study. This limitation should be considered when evaluating
the extent to which our approach generically addresses the identified problem across various languages and

developer communities.

11.4 Diagram Limitations

Currently, our tool generates module diagrams exclusively. It is plausible that combining module and class
diagrams or even incorporating a domain-level view could yield clearer and more comprehensive visualizations
of the system. This limitation should be considered when evaluating the effectiveness of our approach, as

additional diagram types may further enhance the overall understanding of the system’s architecture.

jrus - npan - Thesis 2023 Page 46 of

IT University of Copenhagen Conclusion

12 Conclusion

To investigate the research question, we developed an automated tool implemented in Python. The objective
of the tool was to facilitate the creation and maintenance of customizable architectural diagrams for com-
plex software systems, ensuring their comprehensibility and up-to-dateness. Subsequently, we conducted a
questionnaire-based survey involving developers to evaluate the tool’s effectiveness, gather valuable insights,
and analyze the survey data using thematic analysis.

To enhance the comprehensibility of diagrams, our tool provides users with the flexibility to create custom
views based on their specific needs. This includes the ability to define views that aggregate multiple layers
of the system or focus on individual modules. Users can also filter out modules that are not relevant to
the current view, further refining the visual representation of the architecture. Lastly, the tool offers the
capability of creating ”difference views” which enable visual comparisons between the current state of the
codebase and a specified version. This feature allows developers to easily identify and visualize changes in
the diagrams, providing valuable insights into the evolving architectural structure of the software system.

To address the challenge of maintaining up-to-date architectural documentation, Architectural Lens uti-
lizes static analysis to analyze the code and generate diagrams directly from the source code. This approach
enables developers to effortlessly and efficiently obtain the most recent and accurate version of their documen-
tation by running Architectural Lens as needed. Additionally, Architectural Lens offer seamless integration
with a GitHub action, allowing developers to visualize their architecture and changes through difference
views during pull request reviews.

From the thematic analysis, it is evident that developers recognize the value of scoping different views,
difference views and automating the generation of these views once they are defined. By ensuring that
architectural documentation remains up-to-date and comprehensible, our participants also identified several

other benefits, besides comprehensibility and up-to-dateness including:

e Supporting onboarding of new team members and facilitating better communication within the devel-

opment team.
e Enhancing software quality attributes, such as maintainability.
e Easier for developers to spot architectural errors.
e Removes the element of human error.

In light of our findings, Architectural Lens has demonstrated its potential to address the challenges identi-
fied in the literature and the background section. By offering an automated, customizable, and user-friendly
solution for creating and maintaining architectural diagrams, the tool empowers developers to manage the
complexity of architectural documentation leading to better system understanding. This increased under-
standing and control can lead to better decision-making during the development process.

The flexibility of our approach, exemplified by the tool’s ability to adapt to other programming language,
indicates a potential for further investigation, refinement, and broader application in the field of software
architecture documentation.

Overall, the findings of this report demonstrate the effectiveness of Architectural Lens in addressing the
challenges of creating comprehensible diagrams and maintaining architectural documentation for complex
software systems. By utilizing such a tool, developers can benefit from improved system understanding,

quality, and efficiency in software development.

jrus - npan - Thesis 2023 Page 47 of

IT University of Copenhagen Future Work

13 Future Work

Based on the findings of our study and the feedback from developers, we have identified several potential
avenues for further research and improvement of Architectural Lens. These future work ideas could build
upon the foundation laid in this report and further enhance the tool.

From the analysis section G, we gathered several suggestions for improvements provided by the developers,

including:

1. Exporting the internal dependency graph in an ingestible format (e.g., JSON, TXT) for further code

analysis by the user, potentially enabling more in-depth system understanding and analysis.

2. Making the views interactive by integrating with popular IDEs and code editors, such as Visual Studio
Code, allows users to navigate the system’s architecture by clicking on different modules and fostering
an even more seamless development experience. Furthermore, upon finding the desired view, it can be
automatically inserted into the Architectural Lens’s configuration. This ensures that the chosen view
is generated each time the tool is run, providing a consistently up-to-date and relevant perspective on

the system’s architecture.

3. Suggesting potential improvements for common design mistakes, which could help developers optimize

their system’s architecture and reduce the likelihood of issues arising in the future.

4. Expanding the tool’s capabilities to analyze dependencies across multiple codebases, particularly rel-
evant for systems that rely on microservices architecture, and enhancing the tool’s applicability and

usefulness in modern software development.

5. Developing a GitHub action that automatically adds the latest diagrams to the repository on every

new commit, streamlining the process of keeping architectural documentation up-to-date.

While some of these improvements, such as creating a new GitHub action, may be relatively straight-
forward to implement, others, like suggesting improvements for common design mistakes, may require more
extensive work but could greatly enhance the tool’s value to developers.

In addition to these suggested improvements, we also identified potential benefits that could be investi-

gated in future research:

e Best practice for applying Architectural Lens: This study provided instructions on how to use the tool,
further investigation is warranted to observe how developers naturally would incorporate Architectural
Lens into their software development workflow without guidance. By observing their usage patterns
and strategies, we can gain insights into alternative approaches and uncover effective ways to leverage
the tool.

e Reduced architectural mistakes: In order to investigate the impact of Architectural Lens on reducing
architectural mistakes, it is important to gather quantifiable data. While our study currently provides
qualitative data based on feedback from 5 developers, obtaining quantitative data would provide a more
comprehensive understanding of the tool’s effectiveness. This investigation could involve examining
the frequency and types of architectural mistakes identified during the review process, and comparing

projects with and without the integration of Architectural Lens.

jrus - npan - Thesis 2023 Page 48 of

IT University of Copenhagen Future Work

e Reduced technical debt: Although challenging to evaluate within the scope of our study, we hypoth-
esize that Architectural Lens could help minimize the accumulation of technical debt over time by
encouraging continuous validation and refinement of system architecture. Exploring this hypothesis
could involve longitudinal studies that track the technical debt of projects using Architectural Lens,
comparing it with similar projects not employing the tool. Quantitative metrics, such as code com-
plexity, cohesion, and coupling, could be used alongside qualitative assessments of code quality and

maintainability to measure potential reductions in technical debt.

e Diverse Developer Feedback for Tool Improvement: By adapting the tool to accommodate more pro-
gramming languages, we could gather a broader range of feedback from a more diverse group of devel-
opers. This could provide invaluable insights into potential enhancements for both the tool. Developers
from different languages could bring unique perspectives and challenges, enriching our understanding

of how the tool can be optimized to better address issues in software architecture documentation.

e Conduct research to better understand the factors that contribute to the comprehensibility of software
diagrams, considering not only visual representation but also context, relevance, and usability of the

information presented.

e Explore the potential of machine learning and artificial intelligence techniques in automatically detect-

ing adverse architectural patterns and generating actionable insights for developers.

By exploring these possibilities, we can better understand how Architectural Lens can be adapted and

enhanced to meet the evolving needs of the software development community.

jrus - npan - Thesis 2023 Page 49 of

IT University of Copenhagen BIBLIOGRAPHY

Bibliography

[1] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic, “An empirical study of architectural decay in
open-source software,” in 2018 IEEE International conference on software architecture (ICSA). TEEE,
2018, pp. 176-17 609.

[2] D. Rost, M. Naab, C. Lima, and C. von Flach Garcia Chavez, “Software architecture documentation for
developers: A survey,” in Software Architecture: 7th European Conference, ECSA 2013, Montpellier,
France, July 1-5, 2013. Proceedings 7. Springer, 2013, pp. 72-88.

[3] E. Aghajani, C. Nagy, M. Linares-Vdsquez, L. Moreno, G. Bavota, M. Lanza, and D. C. Shepherd,
“Software documentation: the practitioners’ perspective,” in Proceedings of the ACM/IEEE 42nd In-
ternational Conference on Software Engineering, 2020, pp. 590-601.

[4] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers use documentation: The state of
the practice,” IEEFE software, vol. 20, no. 6, pp. 35-39, 2003.

[5] B. Selic, Using UML for Modeling Complex Real-Time Systems, ser. LNCS. Springer-Verlag, 1998, vol.
1474, pp. 250-260.

[6] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic empirical evaluation of the costs and benefits
of uml in software maintenance,” IEEE Transactions on software engineering, vol. 34, no. 3, pp. 407-432,
2008.

[7] A. Abdurazik and J. Offutt, “Using uml collaboration diagrams for static checking and test genera-
tion,” in UML 2000—The Unified Modeling Language: Advancing the Standard Third International
Conference York, UK, October 2-6, 2000 Proceedings. Springer, 2001, pp. 383-395.

[8] AWS. [Online]. Available: https://aws.amazon.com/what-is/sdlc/

[9] W. Hasselbring, “Software architecture: Past, present, future,” The Essence of Software Engineering,
pp- 169-184, 2018.

[10] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the documentation essential
to software maintenance,” in Proceedings of the 23rd annual international conference on Design of

communication: documenting & designing for pervasive information, 2005, pp. 68-75.

[11] E. Tryggeseth, “Report from an experiment: Impact of documentation on maintenance,” Empirical
Software Engineering, vol. 2, no. 2, pp. 201-207, 1997.

[12] J.-C. Chen and S.-J. Huang, “An empirical analysis of the impact of software development problem
factors on software maintainability,” Journal of Systems and Software, vol. 82, no. 6, pp. 981-992, 2009.

jrus - npan - Thesis 2023 Page 50 of

https://aws.amazon.com/what-is/sdlc/

IT University of Copenhagen BIBLIOGRAPHY

[13]

[18]

[19]

[20]

[21]

[22]

[29]

[30]

N. Alves, T. Mendes, M. de Mendonca, R. Spinola, F. Shull, and C. Seaman, “Identification and
management of technical debt: A systematic mapping study,” Information and Software Technology,
vol. 70, pp. 100-121, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0950584915001743

V. Saxena, S. Kumar et al., “Impact of coupling and cohesion in object-oriented technology,” Journal

of Software Engineering and Applications, vol. 5, no. 9, pp. 671-676, 2012.

Microsoft, “Make the application loosely coupled,” Nov 2022. [Online]. Avail-
able: https://learn.microsoft.com/en-us/aspnet /mvc/overview /older-versions- 1 /contact-manager/

iteration-4-make-the-application-loosely-coupled-cs

P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford, “Documenting software architectures: views
and beyond,” in 25th International Conference on Software Engineering, 2003. Proceedings. IEEE,
2003, pp. 740-741.

A. Begel and N. Nagappan, “Usage and perceptions of agile software development in an industrial
context: An exploratory study,” in First International Symposium on Empirical Software Engineering
and Measurement (ESEM 2007). IEEE, 2007, pp. 255-264.

e. a. Beck, K., “Manifesto for agile software development,” Website, February 2001, accessed: May 21,
2023. [Online]. Available: http://agilemanifesto.org/

I. Sommerville, “Software engineering 10th edition - web chapter: Documentation,” 2010, accessed: 22.
May 2023.

“Drawio,” Website, accessed: May 21, 2023. [Online]. Available: https://www.drawio.com/

S. Brown, “Diagrams as code,” October 2020. [Online]. Available: |https://dev.to/simonbrown/

diagrams-as-code-20eo

“Structurizr dsl,” Website, accessed: May 21, 2023. [Online]. Available: |https://github.com/

structurizr /dsl

“Diagram as code,” Website, accessed: May 21, 2023. [Online]. Available: https://github.com/

mingrammer/diagrams

“Plantuml in a nutshell,” Website, accessed: May 22, 2023. [Online]. Available: https://plantuml.com/
“Mermaid,” Website, accessed: May 21, 2023. [Online]. Available: https://mermaid.js.org/
“Graphviz,” Website, accessed: May 21, 2023. [Online]. Available: https://graphviz.org/

“Swimm,” Website, accessed: May 21, 2023. [Online]. Available: https://swimm.io/integrations/

“Pyreverse,” Website, accessed: May 21, 2023. [Online]. Available: https://pylint.readthedocs.io/en/
latest /pyreverse.html

“Doxygen,” Website, accessed: May 27, 2023. [Online]. Available: https://www.doxygen.nl/

“Umbrello,” Website, accessed: May 27, 2023. [Online]. Available: https://apps.kde.org/da/umbrello/

jrus - npan - Thesis 2023 Page 51 of

https://www.sciencedirect.com/science/article/pii/S0950584915001743
https://www.sciencedirect.com/science/article/pii/S0950584915001743
https://learn.microsoft.com/en-us/aspnet/mvc/overview/older-versions-1/contact-manager/iteration-4-make-the-application-loosely-coupled-cs
https://learn.microsoft.com/en-us/aspnet/mvc/overview/older-versions-1/contact-manager/iteration-4-make-the-application-loosely-coupled-cs
http://agilemanifesto.org/
https://www.drawio.com/
https://dev.to/simonbrown/diagrams-as-code-20eo
https://dev.to/simonbrown/diagrams-as-code-20eo
https://github.com/structurizr/dsl
https://github.com/structurizr/dsl
https://github.com/mingrammer/diagrams
https://github.com/mingrammer/diagrams
https://plantuml.com/
https://mermaid.js.org/
https://graphviz.org/
https://swimm.io/integrations/
https://pylint.readthedocs.io/en/latest/pyreverse.html
https://pylint.readthedocs.io/en/latest/pyreverse.html
https://www.doxygen.nl/
https://apps.kde.org/da/umbrello/

IT University of Copenhagen BIBLIOGRAPHY

[31] J. Aldrich, C. Chambers, and D. Notkin, “Archjava: connecting software architecture to implementa-

tion,” in Proceedings of the 24th international conference on Software engineering, 2002, pp. 187-197.

[32] V. Braun and V. Clarke, Thematic analysis. American Psychological Association, 2012.

jrus - npan - Thesis 2023 Page 52 of

IT University of Copenhagen Appendix

Appendix

Below are the responses from the completed questionnaires. The italicized text indicates the labels assigned

to the answers during the thematic analysis.

Questionaire from Participant 1

Question 1: Could you briefly introduce yourself and share your background in software de-

velopment?

I have been working as a software engineer for over 15 years now. Most of these years i spent as a consultant

in various roles, being a full stack cloud engineer, backend developer, software coach and architect.

Question 2: Please briefly describe the system that you are currently working on

Currently i work on a system for a large home improvement chain in the Netherlands. Specifically the
customer loyalty program. One of the most important things we enable is the loyalty program: a customer
can save points when they buy something, and these points can be spent later on for example a discount.
Other things include the ”my account” stuff: letting customers manage their personal information, receipts,

online orders, their paints and so on.

Question 3: How do you envision integrating the proposed process into your day-to-day work?

The company i work for has several teams working on various systems, and to encourage cooporation across
all teams there are several guilds responsible for different things. One of the guilds i am part of is the
architecture guild, where we aim to have a cohesive architecture and guidelines for all teams to follow. I can
see views generated by applying the process and using Architecture Lens being a great aid in gaining insight
in the various systems during these architecture guild meetings, while also providing a base for discussion

(alignment with design, improve understanding of system,).

Question 4: Considering our proposed process, how do you think the ability to scope views

might impact your overall comprehension of your system architecture?

Some parts of the system are more critical then others, so i can definitely see that creating scoped, more
narrow views of areas of the system that are more business critical then others will be very valueable. (focus
in critical parts of system, scoped views) It is very important to me to reduce my cognitive load, so i can

focus on the stuff that really matters to me.

Question 5: In your opinion, what effect could our proposed process of incorporating diagram

generation as part of a continuous process have on your system’s architectural documentation?

Currently, the architectural documentation is being maintained by hand by someone. All the stereotypical
problems are there: this is a person that does not work on each of these systems, so he needs to get the
information 3rd hand and trust that it’s accurate.(Lack of human error) The documentation does not get
updated all that often, which further reduces accuracy. Also, it is hard to find: it’s hidden on a sharepoint

drive somewhere, and you can never be sure you have the correct version. Finally, it is a single image with

jrus - npan - Thesis 2023 Page 53 of

IT University of Copenhagen Appendix

all components on it, which makes it impossible to parse at first glance.

I am a big proponent of generating documentation and publishing it as part of the deliverables of a
project. Just like you would package up the source code in maybe a deployable docker image, generating and
publishing the documentation that goes with that deployable would make a lot of sense to me. This would
mitigate a lot of the issues described above. Therefore, Applying to the proposed process and continiously
generating views of the system using Architecture Lens which can be stored on github can have a huge

impact.

Question 6: What are your thoughts on showcasing differences between the ”main” branch

and your feature branch when creating a pull request using our proposed process?

Our pull requests are mostly reviewed in the diff view, to see what code got removed and what code got
added. Just by looking at code changes it can be challenging to really understand the consequences these
changes might have. So, just like how we rely on a CI pipeline to verify the changes did not break the build,
having something as part of the pull request that shows the impact on the architecture will help in providing

a better code review. (alignment with design)

Question 7: How well did our proposed process support your workflow and assist you in

maintaining up-to-date architectural documentation?

Very well. Having several diagrams generated as part of the build pipeline feels right at home with generating
and publishing the other artifacts. We can even keep track what version of the architecture is in production,

and which is on staging to really have a clear picture of what is going on. (improve understanding of system)

Question 8: How well did our proposed process support your workflow and assist you in

improving the comprehensibility of your architectural documentation?

It does take some experimentation find scoped views that are applicable for the system as a whole, and
creating scoped views that really zoom in on the part that is under development. But, dialing in the
diagrams also helped me understand what parts i cared and what parts were less relevant, which in turn

also increased my understanding of the system as a whole. (improve understanding of system)

Question 9: Do you have any suggestions to improve the tool to make the diagrams even more

comprehensible or valuable?

Expand the process to also be able to include connected systems. In todays microservice world, it would
be awesome to generate documentation that shows how the microservices are connected to one another.

Including REST calls, topics, queues, databases, etc. (improvements)
Question 10: What additional features or future research directions would you like to see
explored in Architectural Lens?

e Make a VSCode and/or PyCharm plugin that can show the diagrams directly in the IDE.

e Make the diagrams interactive, allowing users to click through and zoom the diagrams. Additionally,

provide the capability to save scoped views in the configuration.

jrus - npan - Thesis 2023 Page 54 of

IT University of Copenhagen Appendix

e Have the tool analyze the architecture and give suggestions on how to improve based on best prac-

tices. (improvements)

Questionaire from Participant 2

Question 1: Could you briefly introduce yourself and share your background in software de-

velopment?

I’'m a senior developer with over 5 years of experience in software development, mostly working on Python

applications. I've been involved in various projects, mainly involving web development and data analysis.

Question 2: Please briefly describe the system that you are currently working on

At the moment, I'm working on a web-based data visualization platform, allowing users to explore and
analyze large datasets through interactive visualizations, like generating heatmaps or creating custom graphs

to compare data points.

Question 3: How do you envision integrating the proposed process into your day-to-day work?

I attended a workshop on Architectural Lens, and it was pretty straightforward to set up and start using
in my own project.(easy to setup) Over the past week, I've been integrating it into my daily work, and it’s
been helpful in automating the generation of architectural diagrams which i and my colleagues understand

and keeping them up-to-date.

Question 4: Considering our proposed process, how do you think the ability to scope views

might impact your overall comprehension of your system architecture?

Although i already knew the system quite well, after using the ability to scope views in the tool while
developing as the process states, my understanding of the system architecture has improved. (scoped views)
It allowed me to focus on specific parts of the system that are most relevant to my work, like the components

responsible for data processing or user authentication. (focus in critical parts of system)

Question 5: In your opinion, what effect could our proposed process of incorporating diagram

generation as part of a continuous process have on your system’s architectural documentation?

Incorporating the diagram generation into a continuous process has helped ensure that our architectural
documentation stays up-to-date and accurately reflects the current state of the system. (up-to-dateness)

This has made it easier to troubleshoot issues or onboard new team members. (onboarding)

Question 6: What are your thoughts on showcasing differences between the ”main” branch

and your feature branch when creating a pull request using our proposed process?

After trying the feature that showcases differences between the "main” branch and my feature branch when
creating a pull request, I found it useful in identifying potential issues or inconsistencies in the architecture,
For instance, I was able to spot a new feature inadvertently introducing a circular dependency, which I
addressed before merging the changes. (spot errors with diff view) Additionally it was useful just to understand
what changes in your system before allowing it to be part of your code-repository, the color highlighting

made that very easy to see. (improve understanding of system)

jrus - npan - Thesis 2023 Page 55 of

IT University of Copenhagen Appendix

Question 7: How well did our proposed process support your workflow and assist you in

maintaining up-to-date architectural documentation?

The process and tool has streamlined my workflow and helped me maintain up-to-date architectural documentation. (up-
to-dateness) I no longer have to spend as much time manually updating diagrams, allowing me to focus on
development tasks. The documentation has however not yet been accepted by my bosses yet, so it is only

me using it right now, I think if it is to be really useful, my colleagues need to do something similar.

Question 8: How well did our proposed process support your workflow and assist you in

improving the comprehensibility of your architectural documentation?

Generating customized views tailored to specific aspects of the system, like showing only the components
related to ”data storage” or "user management”, has made it easier to understand the architecture. (scoped
views) But again, I think its important to note, that for this process to really take effect, it is important
that the entire team atleast adopts the idea, much like we have with unit testing, which I was informed that

the process was inspired by. (team adoption)

Question 9: Do you have any suggestions to improve the tool to make the diagrams even more

comprehensible or valuable?

One suggestion for improvement might be to add more customization options for the diagrams, such as
different visual styles or layout options, to further enhance their readability and appeal. (improvements)
For example, I'd like to have the option to color-code components based on their purpose or layer in the

architecture.

Question 10: What additional features or future research directions would you like to see

explored in Architectural Lens?

I’d be interested to see Architectural Lens and the proposed process extended to support other programming
languages and development environments. It would also be useful to explore ways to integrate the tool more
seamlessly with existing development tools and platforms, like incorporating it into popular IDEs or version

control systems, but it is nice that it is currently available through pip. (improvements)

Questionaire from Participant 3

Question 1: Could you briefly introduce yourself and share your background in software de-

velopment?

Master’s degree in science and engineering, 4 years of experience working as a software developer on Python,
Scala, Java projects in banking and game development.

Question 2: Please briefly describe the system that you are currently working on

It is dockerized Python system designed to transfers files over SF'TP as either client or server. The users
of the system are external banking partners that all have different demands on file formats and encryption

standards making configurability and modularity a big focus of the system.

jrus - npan - Thesis 2023 Page 56 of

IT University of Copenhagen Appendix

Question 3: How do you envision integrating the proposed process into your day-to-day work?

I see two main modes of operation:

1. As a local tool for prototyping sweeping changes to the system (large refactorings or new modular

functionality). (large refactor) The tool would be run often on my local machine, as with unit tests.

2. As a collaborative tool to ensure that other team members align with my design and that my changes
don’t introduce undesired coupling. (alignment with design) This would take place in a space such as a

pull request.

Question 4: Considering our proposed process, how do you think the ability to scope views

might impact your overall comprehension of your system architecture?

I think scoped views is what makes the tool usable for a system of moderate to high complexity. (scoped
views) Being able to pick apart the system and focus on one specific area at a time helps when onboarding
people (onboarding) (as that process is naturally gradual) and also when discussing how specific parts of the
system are implemented. If you could not scope the views, and only had a top-level view, it would not be

as helpful since details would easily be missed.
Question 5: In your opinion, what effect could our proposed process of incorporating diagram
generation as part of a continuous process have on your system’s architectural documentation?

Documentation tends to have a higher quality when it is often iterated upon. Generating an architectural
view of a system with every change vastly increases the odds of the documentation being correct and
precise (up-to-dateness). 1 think it would also lower the barrier for people to start engaging in maintaining
proper documentation, which further spreads knowledge of a system through a team of developers and

designers. (easy to setup)
Question 6: What are your thoughts on showcasing differences between the ”main” branch
and your feature branch when creating a pull request using our proposed process?
This is the most exciting feature for me as it is, due to the following reasons:
1. Checked in and audited in version control.
2. Automated and integrated into build pipelines.

3. Automatically reflecting the changes of the raised pull request (PR), providing a mutual understanding

and solid basis for discussion between reviewers. (alignment with design)
4. Automatically updated upon further code changes based on the evolution of the PR, providing a solid
trail of changes for new reviewers. (evolution of design in PR)
Question 7: How well did our proposed process support your workflow and assist you in
maintaining up-to-date architectural documentation?

The proposed process required minimal modification to my workflow and was easy to integrate.(easy to

setup) The updates to the architectural documentation are naturally iterative and updated often, granting

jrus - npan - Thesis 2023 Page 57 of

IT University of Copenhagen Appendix

the documentation a higher degree of confidence. In addition, as the documentation was generated frequently,
it assisted me in spotting architectural errors before commiting them to the codebase, which in the long run
may help my system quality improve, as it is less complex and has less architectural errors.(helps spot

architectural errors)

Question 8: How well did our proposed process support your workflow and assist you in

improving the comprehensibility of your architectural documentation?

Following the process and applying Architectural Lens helped me gradually gain a more fine-grained under-

standing of the system and its components. (improve understanding of system)

Question 9: Do you have any suggestions to improve the tool to make the diagrams even more

comprehensible or valuable?

Searchable diagrams would be of large help as it aids in breaking down top-level diagrams (which are still
useful if they can be navigated).

Circular dependencies could probably be highlighted with thicker arrows. (improvements) More often than
not you do not want them, if the tool can identify them that’d be a plus.

Question 10: What additional features or future research directions would you like to see

explored in Architectural Lens?

It’d be nice to see what data types flow between modules most often. This is perhaps quite dependant on
the language being analyzed, but seeing if certain types leak very far outside of the module where they are

defined might indicate a leaky abstraction. (improvements)

Questionaire from Participant 4

Question 1: Could you briefly introduce yourself and share your background in software de-

velopment?

Advanced Higher Vocational Education Diploma in Software Development and have been working in software
development for a little bit more than 7 years as a developer and tech lead across various platforms and

languages.

Question 2: Please briefly describe the system that you are currently working on

I work for a large financial institute with tightly coupled Python systems, maintained by several teams

serving, which handles all the business needs for accounting and book keeping purposes.

Question 3: How do you envision integrating the proposed process into your day-to-day work?

I can see it being extremely useful in the change process to evaluate impact and scope of proposed changes
to the system, which otherwise usually relies on manually updated (and often outdated) documentation or
the knowledge of experienced developers. (alignment with design) If we could more easily identify our change
impact, which is made difficult by having many integrations, we would could ease the burden of senior

developers but also in turn more efficiently onboard new developers, speeding up the change process at the

jrus - npan - Thesis 2023 Page 58 of

IT University of Copenhagen Appendix

same time and hopefully lowering our risks related to changes. (helps spot architectural errors) It could also
similarly ease the onboarding of new colleagues by simply serving as an alternative to exploring the system

in an illustrative way rather than by code. (onboarding)

Question 4: Considering our proposed process, how do you think the ability to scope views

might impact your overall comprehension of your system architecture?

The scoped view functionality is key for the process serving as a multi-purpose tool.(scoped views) With
scoped views it could be used for all steps in the development process. A low level scope can be used by the
developer immediately to identify unintended side effects. (helps spot architectural errors) Whilst a top level
view allows designers, testers and architects to properly evaluate module coupling. (improve understanding

of system)

Question 5: In your opinion, what effect could our proposed process of incorporating diagram

generation as part of a continuous process have on your system’s architectural documentation?

In my experience, the only documentation that always stays up to date is the one that is done automatically
and when it’s integrated into the change process this ensures that our documentation always up to date
and factual, automatically. (up-to-dateness) In turn I would hope this would further incentivize developers

to take part in documentation.

Question 6: What are your thoughts on showcasing differences between the ”main” branch

and your feature branch when creating a pull request using our proposed process?

This is essential for the tool to be used in the change process and offers a lot of value for stakeholders as
it can be used to more accurately measure impact and risk for proposed changes.(helps spot architectural
errors) This means it could also be used to troubleshoot or better understand divergences in system output

or state after a change by comparing previous views to the current one.

Question 7: How well did our proposed process support your workflow and assist you in

maintaining up-to-date architectural documentation?

Because it was so easy to integrate I was up and running almost immediately and started generating archi-
tectural views based on live changes. (easy to setup) As it was done automatically from the codebase it was
less prone to mistakes or inaccuracies and in turn also earlier in the development process.(lack of human
error) Traditionally documentation would be done, by hand, after the change was in place but now we could

fully explore architectural differences in a much earlier stage.
Question 8: How well did our proposed process support your workflow and assist you in
improving the comprehensibility of your architectural documentation?

The proposed process allowed me to in an illustrative way explore our system in an up-to-date fashion. (up-

to-dateness)

jrus - npan - Thesis 2023 Page 59 of

IT University of Copenhagen Appendix

Question 9: Do you have any suggestions to improve the tool to make the diagrams even more

comprehensible or valuable?

Perhaps the views could distinctly showcase different types of dependencies (e.g. circular dependencies,

bi-directional dependenices, uni-directional dependencies). (improvements)

Question 10: What additional features or future research directions would you like to see

explored in Architectural Lens?

If it could also export in some raw data format, rather than views, users could more easily parse it with code
for analysis purposes depending on use case, allowing even more flexibility for the tool. (improvements) It
would also mean that users could, potentially, build their own presentation/view layer for the architectural

views which potentially would fit their own use case better.

Questionaire from Participant 5

Question 1: Could you briefly introduce yourself and share your background in software de-

velopment?

Bachelor in software engineering and Software developer/operations engineer with 4 years of experience

working in python backend systems

Question 2: Please briefly describe the system that you are currently working on

Web based monitoring system using precision temperature and humidity sensor hardware to monitor and

validate manufactoring processes for food and pharma industries

Question 3: How do you envision integrating the proposed process into your day-to-day work?

Implementing views to current documentation and most valuable is hooking renders up to PRs and seeing
the diff views. (Difference views) After attending the workshop, it was easy for me to get started using the

process and tool.

Question 4: Considering our proposed process, how do you think the ability to scope views

might impact your overall comprehension of your system architecture?

I think it’ll mostly help me with keeping eye on maintability of the system. To easily spot if any new
dependencies on a new PR has arisen and make sure to avoid any unwanted coupling from happening before
merging. (helps spot architectural errors)

Additionally, when it comes to overall team efficiency and onboarding, I think that visual learning is an
incredibly powerful way to quickly understand and get an overview of a new project. Having pre-generated
and precise views of our system for onboarding of new employees could help with reducing man hours used on
onboarding both for the new employee and the senior developers. (onboarding) While a new employee should
never be afraid to ask questions to understand a new system, this also takes time off the senior developers
having to explain the system, which in itself can be hard to do. Being able to easily divide your project into
subsystems makes it easier to explain, and possibly reduce questions to senior devs how the system works.

(improve understanding of system)

jrus - npan - Thesis 2023 Page 60 of

IT University of Copenhagen Appendix

Question 5: In your opinion, what effect could our proposed process of incorporating diagram

generation as part of a continuous process have on your system’s architectural documentation?

Having this as the source for documentation makes sure its always updated, and no manual work apart from
making new views when needed helps reducing time spent on documentation (which most developers prefer
not to spend time on). (up-to-dateness) We've tried using automated tools in the past, but have not found
any option which gave us anything of value (entire system views are hard to understand, only found tools
which can do this). (automation) I like that you can create specific views in the json file, meaning that i only
have to create the json file once, and then i can always generate the updated views when changes are made

and save them for others to see. (scoped views)

Question 6: What are your thoughts on showcasing differences between the ”main” branch

and your feature branch when creating a pull request using our proposed process?

As previously mentioned, seems like a very nice way of keeping maintainability by visually being able to
spot dependency changes, I tried using it with my colleague to spot errors in our pull requests, it feels like

a clear visual way of validating your architecture continiously. (Difference views)

Question 7: How well did our proposed process support your workflow and assist you in

maintaining up-to-date architectural documentation?

This reduces time spent on updating system diagrams, which was done once in a while. With it happening
automatic, this ensures you have an up to date diagram, and developers don’t have to question whether
diagram is incorrect either from human errors or just not recently updated.(lack of human error, up-to-
dateness) 1 have started storing some of the render views in my github, where they are relevant, it would
be nice if you could specify where they are saved and have a github action in addition which refreshes them

each time a commit is made. (improvements)

Question 8: How well did our proposed process support your workflow and assist you in

improving the comprehensibility of your architectural documentation?

Being able to segment into views helps with focusing on what part of the system you’re working on now,

instead of seeing the whole system in itself and get lost in an enormous diagram. (scoped views)

Question 9: Do you have any suggestions to improve the tool to make the diagrams even more

comprehensible or valuable?

I could see it being very handy to have renders being interactive. So you're able to see the entire system. From
there on click and choose views you'd like to see, highlighting the once you’ve chosen, and grey out/lower
opaque of the modules you haven’t chosen in the view. Additionally as previously mentioned, being able to
give render views a path where they get saved and then have them refreshed on each commit would be nice

to keep them up to date, after saving them. (improvements)

Question 10: What additional features or future research directions would you like to see

explored in Architectural Lens?

This being implemented to other git platforums such as Azure Devops, gitbucket etc. (improvements)

jrus - npan - Thesis 2023 Page 61 of

	Introduction
	Background
	Challenges in Software Documentation
	Software Life Cycle and the Continuous Process of Architectural Documentation
	Planning and Analysis
	Development and Testing
	Deployment and Maintenance

	Software Architecture Adaptability
	Software Architecture Documentation in Complex Systems
	The Complexity of Software Systems
	Keeping Documentation Up-to-Date
	Documenting Interactions and Dependencies

	Agile Practices and Architectural Documentation
	The Agile Perspective on Documentation
	Balancing Agility and Documentation

	Related work
	Existing Tools
	Manual drawing approach
	Diagrams as code
	Automated Tools
	Swimm
	Pyreverse
	Archjava

	Diagrams as Code and Automated Tools

	Method
	Literature Review, Search Strategy and Criteria
	Background
	Tools

	Tool Development and Iterative Feedback
	Evaluation of Architectural Lens
	Workshop
	Analysis

	The automated tool
	Architectural Lens
	Tool Architecture & How the Tool Works
	Parsing the Source Code with an Abstract Syntax Tree (AST)
	Generating Render View: Converting the Graph into PlantUML and Filtering Modules
	Creating Difference Views: Extending the Render View
	Rendering Diagrams and Difference Views Using a PlantUML Server

	Architectural-Lens: Implementation details & Developers perspective
	Language Agnostic
	Installation
	Configuration and Usage

	Applying the Tool: Demo Project
	Setting Up & Entire Domain View
	Package Filtering, Depth View, Ignoring Packages
	Difference View
	GitHub Action for the Demo Project

	Case Study: Applying the tool on Zeeguu
	Scoping the domain: Core and API view of Zeeguu
	Focusing on Specific Domain Components
	Identifying Architectural Errors

	Workshop
	Questionnaire

	Analysis
	Improved understanding and spot architectural errors
	Onboarding
	Architectural alignment
	Usability
	Up-to-datenss & scoped views
	Human error
	Improvements

	Discussion
	Comprehensible and up-to-date diagrams
	Scoped views
	Software Life Cycle
	Onboarding
	Enhancing Quality Attributes: Impact of Architectural Lens
	Usability and ease of use
	Understanding Comprehensible Diagrams

	Limitations & Reliability
	Sample Size and Diversity
	Methodological Limitations
	Tool Limitations
	Diagram Limitations

	Conclusion
	Future Work

