
BSc proj. - ArchLens in VS-Code

Name E-mail
Casper Holten casho@itu.dk
Sebastian Cloos Hylander sehy@itu.dk

Activity code: BIBAPRO1PE
Supervisor: Mircea Lungu

Dynamically Generated Scoped Module Diagrams
in the IDE - ArchLens for VS Code

Casper Holten
BSc. Software Development
IT University of Copenhagen

Email: casho@itu.dk

Sebastian Cloos Hylander
BSc. Software Development
IT University of Copenhagen

Email: sehy@itu.dk

Abstract - Architectural diagrams in large software
projects easily become hard to maintain and understand,
causing them to be abandoned. This results in developers
lacking understanding of what their project’s architecture
actually looks like. We introduce ArchLens for VS Code
which is an extension that dynamically generates scoped
module views for python projects inside a developers
IDE, keeping developers up to date with their project’s
architecture.

I. INTRODUCTION

The proliferation of software as a tool to optimise and
automate tasks has increased the amount and complexity of
software written. As a project grows in size, the increasing
amount of internal dependencies makes it difficult for develop-
ers to be confident in the ways the software’s modules interact
with each other [1].

Managing a project’s inter-module dependencies without
appropriate tools, adherence to the architectural specifications,
or the ability to visualize the architecture can result in archi-
tecture drift and erosion [1]. This can lead to a hard-to-read
and tightly coupled codebase, increasing complexity and cost
of writing software [2].

Architectural Lens (ArchLens)1 is a tool to help develop-
ers focus on their project’s architecture. ArchLens generates
module views of Python source code through a command-line
interface or as a GitHub Actions workflow. While ArchLens
proved effective as a CLI tool and GitHub Actions workflow,
a case study revealed that developers want deeper integration
with their IDEs to enable easy-to-access and continuous ar-
chitectural awareness [3].

A survey about developers’ use of software architecture
documentation [4] emphasised the importance of architectural
views like what ArchLens generates. The survey also men-
tions that traceability and navigation between views and the
developer’s source code are essential for the developer to fully
understand and work with the diagrams [4].

1https://github.com/archlens/ArchLens

Furthermore, a study about developers’ usage of IDEs has
shown that introducing more structured navigation and better
tools for refactoring into a developer’s IDE can improve
overall efficiency when developing [5].

In this paper, we address ArchLens’s limitations as a
disconnected CLI tool for generating architectural views by
integrating it in Visual Studio Code as an extension. We will do
this by dynamically generating and rendering views in Visual
Studio Code. Furthermore, we will connect the diagrams from
ArchLens to the source code by making the views interactive
and navigable, giving the developer an integrated IDE tool to
explore the architecture of their project.

II. STATE OF THE ART

Visualisation of software is an integral part of software
development. Developers have developed a plethora of tools
to visualise software, and these range from hand-drawn paper
diagrams to automatically generated UML diagrams that can
describe even the most complex systems. Software visualisa-
tion helps developers maintain software, gain knowledge about
the architecture, and reverse engineer code that is foreign to
the programmer [6]. Diagrams are also often a part of the
software specifications when developing commercial software.
Many methods for creating diagrams have been proposed, and
here we present a few:

A. Drawn Diagrams

Drawn diagrams are diagrams that are drawn using pen
and paper or using specialised drawing software. Tools to
draw such diagrams include Paint and Gimp, but PowerPoint
also sees widespread adoption as a diagram creation tool [7].
Purpose-made tools like Draw.io and Visio can also be used.
Drawn diagrams often focus on specific parts of a system, as
the time-consuming nature of creating diagrams necessitates
prioritisation [8].

Drawn diagrams reflect the diagram creator’s understanding
of the system, which makes them susceptible to errors or in-
completeness, as they rely entirely on the creator’s knowledge

1

and perspective [8]. If drawn diagrams are not maintained, they
tend to become outdated representations of the system. This
gradual loss of accuracy often leads to these drawn diagrams
being abandoned entirely [9].

B. Diagrams as code

Diagrams can be defined using programming languages or
Domain Specific Languages (DSLs) developed specifically to
define diagrams. PlantUML2 and Graphviz3 are two examples
of widely used software visualisation tools, and they both
define DSLs.

Defining diagrams in code allows for diagram artifacts to
be stored alongside source code in version control, ensuring
consistent visual representation across multiple versions and
views while integrating seamlessly with existing development
workflows.

Diagrams as code suffer from many of the same issues as
drawn diagrams, since they are still based on the creator’s
understanding of the system, and they do not solve the issue
of keeping diagram artifacts up to date.

C. Diagrams derived from source code

It is possible to generate diagrams from source code with
tools like UMLDoclet4 for Java and py2puml5 for Python.
Many IDEs also include tools to generate UML class diagrams
and UML module diagrams.

These diagrams reflect the actual state of the system, and
they are easier to maintain since they can be automatically
generated within seconds. They can also be incorporated into
CI-CD pipelines, allowing programmers to use diagrams in
the same way as automated testing.

Despite being maintainable and convenient to use, the
generated diagrams are often visually complex and tend to
show irrelevant information, hindering the user’s ability to
comprehend them, especially as a program grows large.

D. View-scoped, source-code derived diagrams

Recent research proposes a way to automatically generate
diagrams that are scoped to views defined in code. An example
of this is ArchLens. It generates diagrams based on views
defined in a JSON configuration file [3]. ArchLens generates
user-specified views, and the views only contain elements
declared in the configuration file.

2https://plantuml.com/
3https://graphviz.org/
4https://github.com/talsma-ict/umldoclet
5https://github.com/lucsorel/py2puml

Another novel approach that combines automatic diagram
generation and diagrams defined in Python is Codoc [10],
a tool that allows a developer to specify architectural views
using Python. Codoc generates diagrams with similar visual
information as ArchLens, but the diagrams can only be viewed
on the now-defunct project website. This raises concerns about
privacy and access to the internet, and the stability of web-
based solutions [10].

These two approaches combine the high maintainability
of automatically generated diagrams with the relevance and
conciseness of drawn diagrams, thus resulting in easy-to-
maintain and relevant diagrams [3].

Despite the wide selection of techniques for generating di-
agrams, the diagrams themselves seem to be difficult to relate
to the source code that they represent [4]. Developers have
expressed interest in having diagrams that have traceability to
source code [4], and this is possible by integrating diagram
generation directly with the IDE.

While current diagrams may provide a clear view of what
the software looks like, they do not reveal why a system looks
a certain way. In this paper, we investigate the possibility
of integrating these diagrams as an interactive part of a
developer’s IDE to allow the user to inspect the architecture
of a project.

III. ARCHLENS FOR VS CODE

We introduce ’ArchLens for VS Code’, an extension for
Visual Studio Code that enables users to use ArchLens directly
in their IDE. The extension allows a user to visualise the
architecture of their program with code-defined and focused
architectural views, see how module relations evolve, and
explore module and file relations, without ever leaving their
editor.

The extension is installed through Visual Studio Code’s
built-in marketplace6, or a file7 available on the project’s
GitHub8.

The extension is written using a combination of plain
JavaScript, TypeScript, HTML, and CSS, and it utilizes Visual
Studio Code’s rich API for building extensions. Cytoscape.js9,
a rich graph visualisation library, renders the diagrams.

The extension uses ArchLens to generate the model of the
underlying architectural views. To make ArchLens interoper-
able with the extension, we have modified it in two ways:

6https://marketplace.visualstudio.com/items?itemName=ArchLens.archlens-
for-vscode

7https://github.com/archlens/ArchLens-VsCode-
Extension/releases/tag/v0.2.1

8https://github.com/archlens/ArchLens-VsCode-Extension
9https://js.cytoscape.org/

2

1) Added support for tracking imports at the file level,
enabling ArchLens to identify relationships between files,
and not only modules.

2) Implemented JSON export functionality for architectural
views.

A. Configuring ArchLens for VS Code

The extension relies on an archlens.json configuration
file to define views, GitHub URL, and branch, save location of
diagrams, among other settings. The configuration is modified
using JSON, and as seen in Listing 1, views can be added
to the views property. The user can decide which modules to
include in the view by adding them to the views’ packages
property, and modules can be ignored by adding them to the
ignorePackages property.

1 {
2 ”$schema”: ”https :// raw. githubusercontent .com/archlens

/ArchLens/master/ src / config .schema.json”,
3 ”name”: ”ArchLens”,
4 ” rootFolder ”: ”src” ,
5 ”github”: {
6 ”url ”: ” https :// github .com/archlens /ArchLens”,
7 ”branch”: ”master”
8 },
9 ”saveLocation”: ” ./ diagrams/” ,

10 ”views”: {
11 ”completeView”: {
12 ”packages”: [
13 {”path”: ”*”, ”depth”: 3}
14],
15 ”ignorePackages”: []
16 }
17 }
18 }

Listing 1. Example archlens.json-file with the ”Complete View” view.
This view shows all modules up to three levels deep in the project structure.

B. Using ArchLens for VS Code

The extension adds two commands to VS Code’s Command
Palette:

1) ArchLens: Setup ArchLens - checks that everything is set
up correctly and otherwise helps the user get ready to use
the extension by checking the following:
• The user has chosen a virtual environment as their

Python interpreter.
• ArchLens is installed in the chosen virtual environ-

ment.
• The user has an archlens.json-file, such that they

can configure ArchLens.

2) ArchLens: Open Graph - opens the extension interface
in a new tab, which starts the main functionality of the
extension.

C. Extension user interface

The extension user interface opens as a new tab. As seen
in Figure 1, the extension user interface consists of a header,
an area to render the selected view, and an explorer menu
item ’Dependencies’ to display module relation data. The
header displays the available views. Users can switch between
different views by clicking on the corresponding view button
in the header. The header also contains a checkbox that toggles
between view modes.

Fig. 1. ArchLens for VS Code being used to visualise the original ArchLens.

Module views can contain a lot of modules, and as seen
in Figure 2, the render area of the extension has been given
plenty of room to render views.

Fig. 2. The ’Module view’ shows the overall architecture of the system within
a given architectural view.

3

D. Module views

The module views contain visual information about the
modules included in the view and the relations between them.
The labels between modules indicate how often the source
module imports the target module.

The extension provides two different types of module views.
The regular view shows the different modules and the imports
between them. The Difference View (diff view) compares the
project on Git’s remote to the local state of the project and
highlights the differences between the two.

• New edges or edges with added imports are coloured
green. The edge label displays how many imports are
new compared to the remote and the current number of
imports.

• Edges that have been removed or edges with fewer
imports than the remote branch are coloured red. The
edge label displays the current number of imports and
the number of imports removed compared to the remote.

• Entirely new modules are coloured green.
• Removed modules are coloured red.

The diff view gives insight into how the changes a developer
has made impact the architecture of a project.

Fig. 3. The diff view compares the local project to the remote GitHub
repository and highlights changed dependencies.

The extension monitors changes made in the project, and
when a change has been made to a file, the module views are
re-rendered. Generating the module views can take a while,
so a toast will pop up to notify the user that new views are
being generated.

E. Exploring dependencies

All edges in the view are interactive. When clicked by a
user, an edge will indicate that it is selected as seen in Figure
4, and a menu item ’Dependencies’ will appear in VS Code’s
main explorer.

Fig. 4. An unselected edge and a selected edge. The selected edge is indicated
by the blue arrow.

The Dependencies explorer shows all file-level relations in
the selected edge. The top-level view shows files that import
from the target module. The number in the filename, as seen in
Figure 5, accounts for how many times the source file imports
from the target module.

Fig. 5. The Dependencies explorer shows file relations between modules. Top-
level displays files importing from the target module, with numbers indicating
import counts. Expanded view shows the files imported from the source file,
with numbers showing the import count from the target file.

Expanding a file in the top-level view reveals the files that
the source file (top-level file) imports. It also shows how many
times the target file is imported from the source file. Clicking
a file in the Dependencies explorer item will open the file in
the editor.

IV. CASE STUDY: IDENTIFYING AND RESOLVING
ARCHITECTURAL ISSUES IN ZEEGUU

We applied ArchLens for VS Code to Zeeguu10, a real-world
Python project. Zeeguu already uses ArchLens as a CLI tool

10https://github.com/zeeguu

4

and as a GitHub Actions workflow. This case study documents
how we used ArchLens for VS Code to discover and resolve
architectural issues in Zeeguu.

1) Initial Exploration: We loaded Zeeguu in VS Code, and
observed that Zeeguu already uses ArchLens through other
mediums, as we found four views defined in the project’s
archlens.json. We opened the extension and began ex-
ploring the views.

Fig. 6. The top-level-view-depth-1 view showing Zeeguu’s general
system architecture. Note the circular dependency between core and api.

Figure 6 shows the top-level-view-depth-1 view,
which contains all modules at a folder depth of one, visualising
Zeeguu’s primary system architecture. The circular depen-
dency between core and api, with core importing from api 5
times, and api importing from core 127 times, could indicate
an architectural issue.

Fig. 7. The inside-api view showing the api module’s architecture.

Exploring the inside-api view reveals more potential
issues. In Figure 7, we can see a circular dependency between
api.endpoints and api.utils. We believe the api.utils module

should be decoupled from the rest of the module, and the
singular reference from api.utils to api.endpoints could be the
result of architectural erosion.

2) Exploring problematic dependencies: To understand
where and why these dependencies occur in the relation
between core and api, we used the extension’s Dependencies
explorer. As seen in Figure 8, clicking the edge from core
to api in the top-level-view-depth-1 opened the
Dependencies explorer and revealed the specific files imported
to core from api.

Fig. 8. The Dependencies explorer showing which files are import to core
from api. A) The clicked top-level file is opened in a new tab. B) The file in
the expanded drop-down menu is the file imported from api. It can be clicked,
and the file’s source code opens in a new tab.

In the Dependencies explorer, we could immediately navi-
gate to the source code of the files importing from api in core
by clicking the top-level files as seen in Figure 8(A). Here we
could observe that some imports were happening in the file
scope, and some occurred in functions.

We expanded the top-level files and clicked the files in
the expanded drop-down menus as seen in Figure 8(B), such
that we could read the source code of the files from api and
understand why they were imported.

3) Correcting architectural issues: After exploring all five
dependencies, we observed that these were indeed uninten-
tional.

• core/model/users.py imports
feature_toggles.py. This can be corrected
by using dependency inversion and passing the feature
toggle checks as function parameters instead of using
imported functions from api.

• core/model/feedback_component.py has an
unused import from abort_handling.py. This im-
port is removed.

• core/model/search_subscription.py imports
a make_error from api, that handles HTTP errors. We
refactor the function to throw an exception instead. This
exception can be caught, and the appropriate HTTP error
can be handled in api.

• core/model/search.py has an unused import from
abort_handling.py. This import is removed.

5

• core/test/model_test_mixin.py is tightly cou-
pled to api, as it uses it to initialize a test program. This
import will require a larger architectural review to extract
tests to a separate module or project. This import is left
for now.

We tried to refactor the files in question to conform to the
intended one-directional relationship from api to core, such
that core was completely decoupled from api. This was not
accomplished, but four of the five references were removed,
and the coupling from core to api was lowered. The changes
can be seen in Figure 9.

Fig. 9. inside-api seen through the diff view. The red edge indicates that
four of the five imports from core to api have been removed.

The complete removal of a circular dependency in
inside-api can be seen in Figure 10, where a one-
directional relation api.utils and api.endpoints is observed after
refactoring the module.

Fig. 10. inside-api after removing the circular dependency between
api.utils and api.endpoints.

After refactoring top-level-view-depth-1 and
inside-api, we wanted to see how our local changes
compare to Zeeguu on Git’s remote. We turned on the Diff
View, and as seen in Figure 9, the changes only remove
the unwanted dependencies, without having an unintended
impact on the architecture. No other developer has introduced
architecture-eroding dependencies while we were working.

Through this case study, we have demonstrated that Arch-
Lens for VS Code can be used to identify and rectify
architectural issues. The views allowed us to find circular
dependencies that violated the intended system architecture,
and we could quickly navigate to relevant source code using
the Dependencies explorer. The responsive nature of the views
allowed us to verify that the refactoring had the intended
changes, and the diff view allowed us to verify that no unin-
tended architectural changes were introduced in the process.

V. DISCUSSION

A. Reflections on the case study and ArchLens for VS Code

The case study presented was conducted by the authors
themselves, and Zeeguu is a project developed and maintained
by our supervisor. While this allowed us to gain access to
a project that already uses ArchLens and has useful views
configured, it introduces biases and a level of knowledge about
the program that unaffiliated developers would not have.

We attempted to maintain objectivity throughout the case
study, and focus on concrete observations from using the
extension, but the connection between the extension, project

6

and the authors could influence the results. The case study
revealed how ArchLens for VS Code can be used to spot
architectural erosion, navigate from diagram to relevant source
code, and verify the architectural correctness of a project while
refactoring.

In line with what our own case study found, the case study
from the original ArchLens Paper also showed that ArchLens
as an IDE extension has the potential to add value and insight
to a project throughout development [3].

However, future studies should be conducted that include
developers who have no affiliations or prior experience with
ArchLens for VS Code or Zeeguu, as this would provide
a more objective assessment of the extension’s utility in a
project.

B. Performance

It takes a long time to generate views. ArchLens parses
the entire project as an Abstract Syntax Tree (AST), which
can be time-consuming on large projects. This might not
be an issue when ArchLens is used as a CLI tool, as the
developer occasionally and intentionally runs ArchLens. Since
the extension refreshes the views far more often, the developer
will spend time waiting for the views to update.

This is especially noticeable when using the diff view, since
it clones the remote repository and parses both the local and
remote projects as ASTs before comparing them to each other.

On a project like Zeeguu, generating diff views can take
upwards of a minute. This will automatically happen every
time the view is updated, which is every time the developer
saves a change in VS Code. Due to this, using diff views
actively while developing is impractical, as the developer
would spend most of their time waiting on the diff view to
regenerate.

With the current performance issues, the diff view is mostly
suited as a tool to verify changes to the architecture before
committing changes to the remote.

To fix the performance-related issues, we propose two
solutions.

1) Enhancing the diff view: By using the local .git-file,
the time it takes to generate diff views could be improved. The
.git-file would be used to create a local temporary project to
compare against, rather than cloning the remote. This could
improve the time it takes to generate diff views, making it
more practical to use the diff view while coding.

2) Use VS Code’s code analysis functionality instead of
ArchLens: Another way to improve performance of the exten-
sion would be to use VS Code’s built in code analysis tools
to generate the views instead of ArchLens, as ArchLens was

not originally made to be used with a VS Code Extension.
Integrating the code analysis as part of the extension would
allow direct access to the user’s open workspace and the
API for the IDE’s Language Server Protocols (LSP), allowing
faster parsing of the source code.

By moving the code analysis to the IDE, it would be easier
to allow other extensions to extend ArchLens for VS Code,
since we could expose a language API. This language API
could be used by other extensions to implement code analysers
for other languages, e.g., JavaScript, C#, or C.

This would remove the dependency on the original Python-
based ArchLens and make it easier to support other languages
in the extension.

C. Envisioned features

The extension provides the user with a more seamless
integration of the architectural views generated by ArchLens.
The user also has direct access to the source code, giving
them a tool for exploring and fixing potential problems in
the architecture. However, we believe that both the vision of
insightful and automatically generated scoped views as well
as ArchLens for VS Code can be further improved.

Here we present a few visions for how to increase the
usefulness of ArchLens for VS Code.

1) More diff views: The diff view is currently set to
compare the local project with the latest commit in the remote
repository. To improve the value of the diff view, we want the
user to be able to configure different diff views. This would
allow a developer to define diff views that compare the local
state of the project to important commits in the Git history.
A way this can be done is by adding a diff view section in
archlens.json, where a developer can specify different
commits to compare to, as seen in listing 2.

1 {
2 [... start of archlens . json ...]
3 ”views”: { ... },
4
5 ”diffViews”: {
6 ”lastCommit”: −1,
7 ” latestRelease ”: ”92fdc792”
8 }
9 }

Listing 2. Example archlens.json-file with the proposed concept of
defining different commits for the diff view.

In the example, we have defined two different diff views.

1) lastCommit - A view that always compares the program
to the last commit in the log. By writing a negative
integer, it is interpreted as tracing 1 commit back in the
commit history.

7

2) latestRelease - A view which compares to the commit
hash with the latest release of the project.

This would allow us to generate diff views that compare the
current state of the project to specific commits in the commit
history, rather than the somewhat arbitrary state of the project
that is currently on the remote.

2) Highlight differences: To help a developer notice
changes to their views and architecture, a possible addition
to the extension would be to add a UI element to the header
that shows which views have had changes to them. The
Dependencies explorer should also show which files have had
changes to them, and whether or not imports have been added
or removed from the files.

3) The extension as a navigation tool: The extension could
also be improved by adding improved navigation between the
views and the source code, as well as between the views
themselves. Currently, the views and the source code are
connected via the Dependencies explorer, but introducing more
features for structured navigation could benefit the developer’s
ability to navigate from diagram to source code.

In the future, a developer might be able to navigate by:

• Opening a module folder in the file explorer by clicking
the corresponding node in the diagram. This allows for
visual navigation to the modules in a project, possibly
making navigation in large projects like Zeeguu more
manageable.

• Linking views to diagram nodes to allow navigation
from diagram nodes to related views. This could improve
the navigation in the project and between the views
themselves, e.g., say the developer could link a module
from one view to another view, then clicking the api
module in the top-level-view-depth-1 view in
the Zeeguu project could open the view inside-api,
allowing the developer to gain further information about
the structure of api.

VI. CONCLUSION

In this paper, we have introduced ArchLens for VS Code. A
VS Code extension that dynamically generates module views
for a Python project. A user of the extension can define specific
and insightful views of subsystems or interesting parts of their
project. These views will automatically be refreshed when
changes have been made to the project. Many features from the
original ArchLens have made it to the extension, including the
diff view. We have also introduced interactive edges and the
Dependencies explorer, which allows the developer to navigate
from diagram to source code.

A case study was conducted on the project Zeeguu, which
showed that ArchLens for VS Code can be used to spot

architectural erosion, navigate from diagram to relevant source
code, and verify the architectural correctness of a project while
refactoring. This helps developers focus on the architecture of
a program throughout their development while not changing
their workflow substantially.

Lastly, we went through a few possible improvement to the
extension, mainly focusing on either improving performance
or adding additional features for a developer using ArchLens
for VS Code.

The next step is to evaluate the extension on a group of
unaffiliated developers to see exactly how they respond to
ArchLens for VS Code.

REFERENCES

[1] D. Pollet and S. Ducasse, “ Software Architecture Reconstruction: A
Process-Oriented Taxonomy ,” IEEE Transactions on Software Engi-
neering, vol. 35, pp. 573–591, July 2009.

[2] E. E. Ogheneovo, “On the relationship between software complexity and
maintenance costs,” Journal of Computer and Communications, vol. 2,
no. 14, pp. 1–16, 2014.

[3] J. K. Rusbjerg and N. P. Andersen, “Architectural lens: A tool for
generating comprehensible diagrams,” Master’s thesis, IT University of
Copenhagen, may 2023.

[4] D. Rost, M. Naab, C. Lima, and C. von Flach Garcia Chavez, “Software
architecture documentation for developers: A survey,” Lecture Notes in
Computer Science, pp. 1–88, 2013.

[5] W. Snipes, E. Murphy-Hill, T. Fritz, M. Vakilian, K. Damevski, A. R.
Nair, and D. Shepherd, “Chapter 5 - a practical guide to analyzing ide
usage data,” in The Art and Science of Analyzing Software Data (C. Bird,
T. Menzies, and T. Zimmermann, eds.), pp. 85–138, Boston: Morgan
Kaufmann, 2015.

[6] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and reengineering: A research survey,” Journal on Software
Maintenance and Evolution, vol. 15, pp. 87–109, 03 2003.

[7] R. F. Ciriello, A. Richter, and G. Schwabe, “Powerpoint use and
misuse in digital innovation,” in ECIS 2015 Completed Research Papers,
p. Paper 32, AIS Electronic Library (AISeL), 2015. University of Zurich.

[8] C. Lange, M. Chaudron, and J. Muskens, “In practice: Uml software
architecture and design description,” IEEE Software, vol. 23, no. 2,
pp. 40–46, 2006.

[9] A. M. Fernández-Sáez, M. Genero, and M. R. V. Chaudron, “Empirical
studies concerning the maintenance of UML diagrams and their use in
the maintenance of code: A systematic mapping study,” Information and
Software Technology, vol. 55, no. 7, pp. 1119–1142, 2013.

[10] C. W. Bang and M. Lungu, “Codoc: Code-driven architectural view
specification framework in python,” in 2021 Working Conference on
Software Visualization (VISSOFT), pp. 120–124, 2021.

8

